N

MICROCHIP

MPLAB® XC8 C Compiler
Legacy User’s Guide

00000000000

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

For information regarding Microchip’s Quality Management Systems,

please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA
are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company,
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, BlueSky, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICKkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/0, SMART-I.S., SQl,
SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany
I GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2012-2020, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-6609-3

DS50002053J-page 2

© 2012-2020 Microchip Technology Inc.

www.microchip.com/quality
www.microchip.com/quality

MPLAB® XC8 C COMPILER
MICROCHIP LEGACY USER’S GUIDE

Table of Contents
=Y - T N 7
Chapter 1. Compiler Overview
T INrOAUCHION ..o 15
1.2 Compiler Description and Documentation ..o 15
1.3 Device DesCriplionccooiiiiiiii e 16
Chapter 2. Common C Interface
2200 I 11 Yo [T3 1o o P 17
2.2 Background — The Desire for Portable Codecccccooiiiiiiiiiiiiiiiee, 17
2.3 USING T CCl ..eeeiiiiiiiiiiii ettt e e ee e e e s e eeeeeeeeeeeeeeeeeaeees 20
2.4 ANSI Standard Refinement ... 21
2.5 ANSI Standard EXtENSIONSccoeeeiiiiiiiiiieee e e e e 29
2.6 ComMPIler FEAUIESuuuuiiiiiiiiiiiiiiiiiiieee ettt e et e e e e e e e e e e e eeeaeeeeees 43
Chapter 3. How To’s
G 700 I 011 Yo [T3 1o o 45
3.2 Installing and Activating the Compiler ... 45
3.3 InvoKing the COMPIIETuuuuiiiiiiiiiiiiiiiiit et e e aeeereeeeeeeeees 46
3.4 Writing SOUICE COUEuuiiiiiiiiiiiiiiiee e 48
3.5 Getting My Application to Do What | Wantc.ccooo. 60
3.6 Understanding the Compilation Processccccccvviviiiiiiiiiiiiiiiiiiiie 65
3.7 Fixing Code that Does NOot WOrKoovieieiiiiiieeee e 72
Chapter 4. XC8 Command-Line Driver
A1 INrOAUCHION .eeee e e 77
4.2 Invoking the Compiler ... 78
4.3 The Compilation SEQUENCEccooeiiiiiiieii e 80
4.4 RUN-TIME FilES ..ttt e e e e e e e e e e ennes 86
4.5 Compiler OUIPUL ...ttt eeeeeeeeeees 87
4.6 Compiler MESSAGEScooeiiiiei e 89
4.7 MPLAB XC8 Driver OptiOnsccciioiiiiii e neeeeeeneees 93
4.8 Option DeSCPLONS ...cccoiiiiiiii e 94
4.9 MPLAB X Option Equivalentsccooeeiieiiiii e, 122

© 2012-2020 Microchip Technology Inc. DS50002053J-page 3

MPLAB® XC8 C Compiler Legacy User’s Guide

Chapter 5. C Language Features

£ 700 I 0] Yo [T3 1o o TSRS 123
5.2 ANSI C Standard ISSUEScoeiiiiiiiiiiiici e, 123
5.3 Device Related Features ..o e 126
5.4 Supported Data Types and Variablescccco e, 137
5.5 Memory Allocation and ACCESScccuviviiiiiiieiieeeeeeee e e e e e e 156
5.6 Operators and Statements ..., 173
LI A =T o 1] (T g U= T = RPN 175
B8 FUNCLONS ... et e e e eeees 176
Lo I 0] (T o (U o €= ST 184
5.10 main, Run-Time Start-up and Reset ..., 194
Lo 20t T o =4 =Y RPN 198
5.12 Mixing C and Assembly COAEooiiiiiiiiiiiiiiiieee e 200
5,13 Optimizationsoovviiiiiiiii 212
5.14 PrepPrOCESSING ...oeieiiiiiiieieit e ettt e e et e e e ee s 214
5.15 LinKing Programsccoouiiiiiiii i e et e e e e e e e e e e e e e enannes 225
Chapter 6. Macro Assembler
B.1 INTrOdUCHION ..ot ee e 237
6.2 MPLAB XC8 Assembly Languageccooieiieiiiiiiiiiciis e e e e 238
6.3 Assembly-Level Optimizations ..., 264
6.4 ASSEMDIY LISt FileSeeeeeiiieeie e 265
Chapter 7. Linker
7.1 INtrOdUCLION ..o e 275
7.20peration ..o 275
7.3 Relocation and PSECEScoooiiiiiiiiiii e 283
A 37 =T N 1= RS SSRRR 284
Chapter 8. Utilities
8.1 INTrOdUCHION ..ot 289
8.2 LIDrarian ... aeaeas 290
8.3 HEXMATE ooiiiiiiiiiiiiieieieiee et ettt ettt ettt ettt et e e e et e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaaaaeaeens 293
8.4 Hash Value Calculationscccoooiiiiiiiiiiiii e 303
Appendix A. Library Functions
A INTrOdUCION oo e 311
Appendix B. Embedded Compiler Compatibility Mode
B.1 INtrodUCHION ... 401
B.2 Compiling in Compatibility Modecoooiiiiiiiiiii e, 401
B.3 Syntax Compatibilitycooiiiiiiiiiii e 402
D= = T I8/ o U 403
B.5 OPErator ..o 403
B.6 Extended KEYWOIdSoiiiiiiiiceeeeis et e e e e e 404
B.7 IntrinSic FUNCLIONS ..o 405
G N = o .= 1= U 406

DS50002053J-page 4 © 2012-2020 Microchip Technology Inc.

Table of Contents

Appendix C. Error and Warning Messages
(O30 10 o Yo 11 T3 1) o ISR 407
Appendix D. Implementation-Defined Behavior
D.1INtrodUCHiON ..o 543
D.2 Translation (G.3.1) ..o 543
D.3 ENVIroNMENt (G.3.2) ...euieiiiiiiiiiiie et 543
D.4 1dentifiers (G.3.3) .uiiiiiiiiee e 544
D.5 Characters (G.3.4)ueeiiiiieeiiiee e 544
D.6 INtEErS (G.3.5) woiiiiiiiie et 545
D.7 Floating-Point (G.3.6)cooiiiiiiiiiiiiie e 546
D.8 Arrays and Pointers (G.3.7) ... 546
D.9 RegiSters (G.3.8) oo 546
D.10 Structures, Unions, Enumerations and Bit Fields (G.3.9) 547
D.11 Qualifiers (G.3.10) ..eoiiiiiiiie e e 547
D.12 Declarators (G.3.11) oo, 547
D.13 Statements (G.3.12) ..ooeiiiiiiiiie e 547
D.14 Preprocessing Directives (G.3.13) ..., 548
D.15 Library FUNCtions (G.3.14) ... 549
€ X7 7 T 551
3 o 1= 571
Worldwide Sales and Service ... 582

© 2012-2020 Microchip Technology Inc. DS50002053J-page 5

MPLAB® XC8 C Compiler Legacy User’s Guide

NOTES:

DS50002053J-page 6 © 2012-2020 Microchip Technology Inc.

MPLAB® XC8 C COMPILER

MICROCHIP LEGACY USER’S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions can differ from those in this document. Please refer to our website
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page,
in front of the page number. The numbering convention for the DS number is “DSXXXXXXXXA”,
where “XXXXXXXX” is the document number and “A” is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE online help.
Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
MPLAB® XC8 C Compiler Legacy User’s Guide. ltems discussed in this chapter include:

Document Layout

Conventions Used in this Guide

Recommended Reading

Recommended Reading

The Microchip Website

Development Systems Customer Change Notification Service
Customer Support

Document Revision History

DOCUMENT LAYOUT
The MPLAB XC8 C Compiler Legacy User’'s Guide is organized as follows:

Chapter 1. Compiler Overview

Chapter 2. Common C Interface

Chapter 3. How To’s

Chapter 4. XC8 Command-Line Driver
Chapter 5. C Language Features

Chapter 6. Macro Assembler

Chapter 7. Linker

Chapter 8. Utilities

Appendix A. Library Functions

Appendix B. Embedded Compiler Compatibility Mode
Appendix C. Error and Warning Messages
Appendix D. Implementation-Defined Behavior
Glossary

Index

© 2012-2020 Microchip Technology Inc. DS50002053J-page 7

MPLAB® XC8 C Compiler Legacy User’s Guide

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

| Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User’s Guide

Emphasized text

...Is the only compiler...

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”
dialog
Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

Atab

Click the Power tab

N‘Rnnnn

A number in verilog format,
where N is the total number of
digits, Ris theradixand nis a
digit.

4'b0010, 2'hF1

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Courier New

Sample source code

#define START

Filenames autoexec.bat

File paths c:\mccl18\h

Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants O0xFF, ‘A’

Italic Courier New

A variable argument

file.o, where file can be
any valid filename

Square brackets []

Optional arguments

mccl8 [options] file

[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]1}

Ellipses...

Replaces repeated text

var name [,
var name...]

Represents code supplied by
user

void main (void)

{
}

DS50002053J-page 8

© 2012-2020 Microchip Technology Inc.

Preface

RECOMMENDED READING

This user’s guide describes how to use MPLAB XC8 C Compiler. Other useful
documents are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.

Readme for MPLAB XC8 C Compiler

For the latest information on using the MPLAB XC8 C Compiler, read “MPLAB® XC8 C
Compiler Release Notes” (an HTML file) in the Docs subdirectory of the compiler’s
installation directory. The release notes contain update information and known issues
that cannot be included in this user’s guide.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in
the Readmes subdirectory of the MPLAB IDE installation directory. The Readme files
contain update information and known issues that cannot be included in this user’'s
guide.

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website
is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the website contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

© 2012-2020 Microchip Technology Inc. DS50002053J-page 9

MPLAB® XC8 C Compiler Legacy User’s Guide

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata that are related to a specified product family or
development tool of interest.

To register, access the Microchip website at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

Compilers — The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembler); all MPLAB linkers (including
MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.
In-Circuit Debuggers — The latest information on the Microchip in-circuit
debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit™ 3
debug express.

MPLAB® IDE — The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

Programmers — The latest information on Microchip programmers. These include
production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB
ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included
are nonproduction development programmers, such as PICSTART® Plus and
PICkit 2 and 3.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

Distributor or Representative
Local Sales Office

Field Application Engineer (FAE)
Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the website at:
http://www.microchip.com/support

DS50002053J-page 10

© 2012-2020 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com/support

Preface

DOCUMENT REVISION HISTORY
Revision J (August 2020)

Added new --STD language standard option
Removed MPLAB X IDE option equivalents
Added information on the code coverage feature
Expanded language limitations

Added and expanded assembler features
Updated --RUNTIME and --SUMMARY options
Removed outdated methods of setting Configuration bits
Added new non-standard type keywords
Updated symbols assigned to static objects
Updated predefined macros

Documented new HEXMATE features

Added new error and warning messages

Revision H (September 2017)

Revised information on local optimizations

Added new pointer target qualifiers

Updated MPLAB X IDE Compiler optimizations option diagram
Clarified and updated some options used by HEXMATE
Corrected module name used in vectored interrupt section
Added new error and warning messages

Revision G (November 2016)

Expanded sections on interrupts to deal with new devices with vector tables
Added new driver option -—UNDEFINTS and ivt sub-option to -—RUNTIME
Added details on new assembler instructions and directives

Clarified usage of EEPROM functions

Added new errata workaround information

Updated MPLAB X IDE optimizations project properties dialog

Expanded section on HEXMATE hash algorithms

Added new error and warning messages

Revision F (December 2015)

Added new “How To’s”

Added new driver option, --DEP, expanded —-0PT, and updated -V option
Updated predefined macros table

Improved function allocation sections

Added descriptions of new ‘relaxed’ 32-bit floating-point routines; new
___fpnormalize function

Added EXTRN assembler directive

Expanded assembly optimizations section

Added new section on writing reentrant assembly routines with parameters
Revised the sections relating to the main linker options used to link psects
Added new section on HEXMATE algorithms; included new examples
Added new error and warning messages

© 2012-2020 Microchip Technology Inc. DS50002053J-page 11

MPLAB® XC8 C Compiler Legacy User’s Guide

Revision E (January 2015)

» Added new “How To’s”

* Detailed the compiler’s use of hardware multiply instructions

» Updated information relating to psect definitions and their effect on optimizations
» Corrected information relating to maximum reentrant-function stack sizes

» Updated compiler warning and error messages; improved message descriptions
relating to fixup errors and malformed arrays

+ Added further information relating to customizing user-defined psects
 Improved printf library function description and expanded code example
* Added new --MAXIPIC and --NOFALLBACK options

» Many general corrections and improvements

Revision D (Dec 2013)

» Added new information relating to the software stack and function reentrancy.
» Added information relating to code profiling features offered by the compiler.

» Removed information pertaining to MPLAB 8 IDE.

» Added new “How To’s”

» Removed sections on OBJTOHEX and CROMWELL.

» Added additional information relating to assembly code formats and operators.
» Corrected Fletcher algorithms used by HEXMATE.

» Added new driver options and updated existing option descriptions.

» Added and updated macros, built-ins and functions in Library Function chapter.
» Updated compiler warning and error messages.

Revision C (May 2013)

* Added Embedded Compiler Compatibility Mode chapter.

» Added information relating to new ELF/DWARF debugging files.

+ Added new driver options and updated existing option descriptions.
* Updated MPLAB X IDE option dialog descriptions relating to compiler options.
» Expanded information relating to the available optimizations.

» Added code to illustrate algorithms used by HEXMATE.

* Updated compiler warning and error messages.

» Updated information relating to list and map file contents.

» Added information about multiplication routines.

» Expanded information about eeprom variables and bit objects.

» Expanded information relating to the configuration pragma.
 Added information and examples using the section () specifier.

» Expanded and extended information relating to assembly code deviations and
assembler directives.

DS50002053J-page 12 © 2012-2020 Microchip Technology Inc.

Preface

Revision B (July 2012)

* Added How To’s chapter.

» Expanded section relating to PIC18 erratas.

» Updated the section relating to compiler optimization settings.

* Updated MPLAB v8 and MPLAB X IDE project option dialogs.

» Added sections describing PIC18 far qualifier and in-line function qualifier.
» Expanded section describing the operation of the main() function

» Expanded information about equivalent assembly symbols for Baseline parts.
» Updated the table of predefined macro symbols.

» Added section on #pragma addrqual

» Added sections to do with in-lining functions

» Updated diagrams and text associated with call graphs in the list file

» Updated library function section to be consistent with packaged libraries

* Added new compiler warnings and errors.

» Added new chapter describing the Common C Interface Standard (CCl)

Revision A (February 2012)

Initial release of this document.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 13

MPLAB® XC8 C Compiler Legacy User’s Guide

NOTES:

DS50002053J-page 14 © 2012-2020 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP LEGACY USER’S GUIDE

Chapter 1. Compiler Overview

1.1 INTRODUCTION

This chapter is an overview of the MPLAB® XC8 C Compiler, including these topics.

» Compiler Description and Documentation
* Device Description

1.2 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB XC8 C Compiler is a free-standing, optimizing ISO C90/C99 cross
compiler for the C programming language.

The compiler supports all 8-bit PIC® and AVR® microcontrollers; however, this
document describes the use of the legacy xc8 driver for programs that target only
Microchip PIC devices, and additionally, that are built against the C90 Standard. See
the “MPLAB® XC8 C Compiler User’s Guide for AVR® MCU” (DS50002750) for
information on using this compiler when targeting Microchip AVR devices. If you are
using the C99 Standard or the newer xc8-cc compiler driver, see the “MPLAB® XC8
C Compiler User’s Guide for PIC® MCU” (DS50002737) document.

Note: Features described as being part of MPLAB XC8 in this document assume
that you are using a Microchip PIC device and are building for the C90 C
standard. These features may differ if you choose to instead compile for a
Microchip AVR device or for the C99 standard.

When compiling for the C90 Standard, this compiler utilizes the older CPP/P1
front-end. The Clang compiler front-end is used when building for C99 projects.

1.2.1 Conventions

Throughout this manual, the term, “compiler”, is used. It can refer to all, or a subset of,
the collection of applications that comprise the MPLAB XC8 C Compiler. When it is not
important to identify which application performed an action, it will be attributed to “the
compiler”.

In a similar manner, “compiler” is often used to refer to the command-line driver;
although specifically, the driver for the MPLAB XC8 C Compiler package is named xcS8.
The driver and its options are discussed in Section 4.7 “MPLAB XC8 Driver
Options”. Accordingly, “compiler options” commonly refers to command-line driver
options.

In a similar fashion, “compilation” refers to all or a selection of steps involved in
generating an executable binary image from source code.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 15

MPLAB® XC8 C Compiler Legacy User’s Guide

1.3 DEVICE DESCRIPTION

This guide describes the MPLAB XC8 C Compiler’s support for all 8-bit Microchip PIC
devices with baseline, mid-range, enhanced mid-range and PIC18 cores. The following
descriptions indicate the distinctions within those device cores.

The baseline core uses a 12-bit wide instruction set and is available in PIC10, PIC12
and PIC16 part numbers.

The enhanced baseline core also uses a 12-bit instruction set, but this set includes
additional instructions. Some of the enhanced baseline chips support interrupts and the
additional instructions used by interrupts. These devices are available in PIC12 and
PIC16 part numbers.

The mid-range core uses a 14-bit wide instruction set that includes more instructions
than the baseline core. It has larger data memory banks and program memory pages,
as well. It is available in PIC12, PIC14 and PIC16 part numbers.

The enhanced mid-range core also uses a 14-bit wide instruction set, but incorporates
additional instructions and features. There are both PIC12 and PIC16 part numbers
that are based on the enhanced mid-range core.

The PIC18 core instruction set is 16 bits wide, and features additional instructions and
an expanded register set. PIC18 core devices have part numbers that begin with
PIC18.

The compiler takes advantage of the target device’s instruction set, addressing modes,
memory and registers whenever possible.

See Section 4.8.19 “--CHIPINFO: Display List of Supported Devices” for
information on finding the full list of devices that are supported by the compiler.

DS50002053J-page 16

© 2012-2020 Microchip Technology Inc.

MPLAB® XC8 C COMPILER
MICROCHIP LEGACY USER’S GUIDE

Chapter 2. Common C Interface

21 INTRODUCTION

The Common C Interface (CCI) is available with all MPLAB XC C compilers and is
designed to enhance code portability between these compilers. For example,

CCI conforming code would make it easier to port from a PIC18 MCU using the MPLAB
XC8 C compiler to a PIC24 MCU using the MPLAB XC16 C compiler.

The CCl assumes that your source code already conforms to the ANSI Standard. If you
intend to use the CClI, it is your responsibility to write code that conforms. Legacy
projects will need to be migrated to achieve conformance. A compiler option must also
be set to ensure that the operation of the compiler is consistent with the interface when
the project is built.

The following topics are examined in this chapter of the MPLAB XC8 C Compiler User’s
Guide:

» Background — The Desire for Portable Code
» Using the CCI

* ANSI Standard Refinement

* ANSI Standard Extensions

» Compiler Features

2.2 BACKGROUND - THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different
execution environment than that for which it was written. Rarely can code be one
hundred percent portable, but the more tolerant it is to change, the less time and effort
it takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,
but this is only part of the situation. The same code could be compiled for the same
target but with a different compiler. Differences between those compilers might lead to
the code failing at compile time or run time, so this must be considered as well.

You can only write code for one target device and only use one brand of compiler, but
if there is no regulation of the compiler’s operation, simply updating your compiler
version can change your code’s behavior.

Code must be portable across targets, tools and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the
compiler vendors can base their products on different technologies, implement different
features and code syntax, or improve the way their product works. Many a great
compiler optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed
and code is more portable. The American National Standards Institute (ANSI) pub-
lishes standards for many disciplines, including programming languages. The ANSI C
Standard is a universally adopted standard for the C programming language.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 17

MPLAB® XC8 C Compiler Legacy User’s Guide

2.21 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compiler
vendors to target new devices and improve code generation, with the known functional
operation of source code for programmers. If both goals can be met, source code can
be made portable.

The standard is implemented as a set of rules, which detail not only the syntax that a
conforming C program must follow, but the semantic rules by which that program will
be interpreted. Thus, for a compiler to conform to the standard, it must ensure that a
conforming C program functions as described by the standard.

The standard describes implementation, the set of tools and the run-time environment
on which the code will run. If any of these change, e.g., you build for, and run on, a dif-
ferent target device, or if you update the version of the compiler you use to build, then
you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the
program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,
some specifications appear somewhat vague. For example, the standard states that an
int type must be able to hold at least a 16-bit value, but it does not go as far as saying
what the size of an int actually is, and the action of right shifting a signed integer can
produce different results on different implementations; yet, these different results are
still ANSI C compliant.

If the standard is too strict, device architectures cannot allow the compiler to conform;’
but if it is too weak, programmers would see wildly differing results within different
compilers and architectures, and the standard would lose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups
that include the following behaviors:

Implementation-defined | This is unspecified behavior in which each
behavior implementation documents how the choice is made.

Unspecified behavior | The standard provides two or more possibilities and
imposes no further requirements on which possibility is
chosen in any particular instance.

Undefined behavior This is behavior for which the standard imposes no
requirements.

Code that strictly conforms to the standard does not produce output that is dependent
on any unspecified, undefined or implementation-defined behavior. The size of an int,
which was used as an example earlier, falls into the category of behavior that is defined
by implementation. That is to say, the size of an int is defined by which compiler is
being used, how that compiler is being used and the device that is being targeted.

All the MPLAB XC compilers conform to the ANSI X3.159-1989 Standard for program-
ming languages (with the exception of the MPLAB XC8 compiler’s inability to allow
recursion, as mentioned in the footnote). This is commonly called the C89 Standard.
Some features from the later standard, C99, are also supported.

1. For example, the mid-range PIC® microcontrollers do not have a data stack. Because a com-
piler targeting this device cannot implement recursion, it (strictly speaking) cannot conform to
the ANSI C Standard. This example illustrates a situation in which the standard is too strict for
mid-range devices and tools.

DS50002053J-page 18

© 2012-2020 Microchip Technology Inc.

Common C Interface

For freestanding implementations (or for what we typically call embedded applications),
the standard allows non-standard extensions to the language, but obviously does not
enforce how they are specified or how they work. When working so closely to the
device hardware, a programmer needs a means of specifying device setup and inter-
rupts, as well as utilizing the often complex world of small device memory architectures.
This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and
compiler vendors, programmers need to consider the implementation-defined behavior
of their tools and the probability that they may need to use extensions to the C language
that are non-standard. Both of these circumstances can have an impact on code
portability.

2.2.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier
for programmers to achieve consistent outcomes on all Microchip devices when using
any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the | The CCIl documents specific behavior for some code in which
ANSI C Standard |actions are implementation-defined behavior under the ANSI
C Standard. For example, the result of right shifting a signed
integer is fully defined by the CCI. Note that many
implementation-defined items that closely couple with device
characteristics, such as the size of an int, are not defined by
the CCI.

Consistent syntax | The CCI non-standard extensions are mostly implemented
for non-standard |using keywords with a uniform syntax. They replace keywords,
extensions macros and attributes that are the native compiler implementa-
tion. The interpretation of the keyword can differ across each
compiler and any arguments to the keywords can be device
specific.

Coding guidelines | The CCI can indicate advice on how code should be written so
that it can be ported to other devices or compilers. While you
may choose not to follow the advice, it will not conform to the
CCl.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 19

MPLAB® XC8 C Compiler Legacy User’s Guide

2.3 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and
standardizing the syntax for extensions to the language.

The CCl is something you choose to follow and put into effect, thus it is relevant for new
projects, although you can choose to modify existing projects so they conform.

For your project to conform to the CCI, you must do the following things.

» Enable the CCI
Use the --EXT=cci command-line option.

* Include <xc.h> in every module
Some CCI features are only enabled if this header is seen by the compiler.

* Ensure ANSI Compliance
Code that does not conform to the ANSI C Standard does not confirm to the CCI.

* Observe Refinements to ANSI by the CCI
Some ANSI implementation-defined behavior is defined explicitly by the CCI.

» Use the CCI Extensions to the Language
Use the CCI extensions rather than the native language extensions.

The next sections detail specific items associated with the CCI. These items are seg-
regated into those that refine the standard, those that deal with the ANSI C Standard
extensions, and other miscellaneous compiler options and usage. Guidelines are
indicated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed
in this document, then it is not part of the CCI. For example, GCC case ranges, label
addresses and 24-bit short long types are not part of the CCI. Programs which use
these features do not conform to the CCI. The compiler may issue a warning or error
to indicate a non-CCl feature has been used and the CCl is enabled.

DS50002053J-page 20

© 2012-2020 Microchip Technology Inc.

Common C Interface

2.4 ANSI STANDARD REFINEMENT

The following topics describe how the CCI refines the implementation-defined
behaviors outlined in the ANSI C Standard.

241 Source File Encoding

Under the CClI, a source file must be written using characters from the 7-bit ASCII set.
Lines can be terminated using a line feed (\n’) or carriage return (\r’) that is immedi-

ately followed by a line feed. Escaped characters can be used in character constants
or string literals to represent extended characters that are not in the basic character set.

2411 EXAMPLE

The following shows a string constant being defined that uses escaped characters.
const char myName[] = "Bj\370rk\n";

2412 DIFFERENCES

All compilers have used this character set.

2413 MIGRATION TO THE CCI

No action required.

24.2 The Prototype for main ()
The prototype for the main () function is:
int main (void) ;

2421 EXAMPLE

The following shows an example of how main () might be defined:

int main (void)
{
while (1)
process () ;

}
2422 DIFFERENCES
The 8-bit compilers used a void return type for this function.

2423 MIGRATION TO THE CCI

Each program has one definition for the main () function. Confirm the return type for
main () in all projects previously compiled for 8-bit targets.

243 Header File Specification

Header file specifications that use directory separators do not conform to the CCI.

2431 EXAMPLE

The following example shows two conforming include directives.

#include <usb main.h>
#include "global.h"

© 2012-2020 Microchip Technology Inc. DS50002053J-page 21

MPLAB® XC8 C Compiler Legacy User’s Guide

2432 DIFFERENCES

Header file specifications that use directory separators have been allowed in previous
versions of all compilers. Compatibility problems arose when Windows® style
separators, “\”, were used and the code was compiled under other host operating
systems. Under the CCI, no directory separators should be used.

2433 MIGRATION TO THE CCI

Any #1include directives that use directory separators in the header file specifications
should be changed. Remove all but the header filename in the directive. Add the direc-
tory path to the compiler’s include search path. This will force the compiler to search
the directories specified with this option.

For example, the following code:

#include <inc/lcd.h>

should be changed to:
#include <lcd.h>

and the path to the inc directory added to the compiler’s header search path on the
command-line is as follows:

-Ilcd

244 Include Search Paths
When you include a header file under the CCI, the file should be discoverable in the
paths searched by the compiler that are detailed below.

Header files specified in angle bracket delimiters (< >) should be discoverable in the
search paths that are specified by -1 options, or in the standard compiler include
directories. The -1 options are searched in the order in which they are specified.

Header files specified in quote characters (" ") should be discoverable in the current
working directory or in the same directories that are searched when the header files are
specified in angle bracket delimiters (as above). In the case of an MPLAB X project, the
current working directory is the directory in which the C source file is located. If unsuc-
cessful, the search paths should be to the same directories searched when the header
file is specified in angle bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

2441 EXAMPLE

If including a header file, as in the following directive:
#include "myGlobals.h"

The header file should be locatable in the current working directory, or the paths
specified by any - T options or the standard compiler directories. A header file being
located elsewhere does not conform to the CCI.

2442 DIFFERENCES

The compiler operation under the CCl is not changed. This is purely a coding guideline.

2443 MIGRATION TO THE CCI

Remove any option that specifies header file search paths other than the -1 option and
use the -1 option in place of this. Ensure the header file can be found in the directories
specified in this section.

DS50002053J-page 22

© 2012-2020 Microchip Technology Inc.

Common C Interface

245 The Number of Significant Initial Characters in an ldentifier

At least the first 255 characters in an identifier (internal and external) are significant.
This extends upon the requirement of the ANSI C Standard that states a lower number
of significant characters are used to identify an object.

2451 EXAMPLE

The following example shows two poorly named variables, but names which are
considered unique under the CCI.

int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningFast;
int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningSlow;

2452 DIFFERENCES

Former 8-bit compilers used 31 significant characters by default, but an option allowed
this to be extended.

The 16 and 32-bit compilers did not impose a limit on the number of significant
characters.

2453 MIGRATION TO THE CCI

No action required. You can take advantage of the less restrictive naming scheme.

246 Sizes of Types

The sizes of the basic C types (e.g., char, int and 1ong) are not fully defined by the
CCI. These types, by design, reflect the size of registers and other architectural
features in the target device. They allow the device to efficiently access objects of this
type. The ANSI C Standard does, however, indicate minimum requirements for these
types, as specified in <limits.h>.

If you need fixed size types in your project, use the types defined in <stdint.h>
(e.g., uint8 torintlé6 t). These types are consistently defined across all
XC compilers, even outside of the CCI.

Essentially, the C language offers a choice of two groups of types: those that offer sizes
and formats that are tailored to the device you are using, or those that have a fixed size,
regardless of the target.

246.1 EXAMPLE

The following example shows the definition of a variable, native, whose size will allow
efficient access on the target device, and a variable, fixed, whose size is clearly
indicated and remains fixed, even though it may not allow efficient access on every
device.

int native;
intlé t fixed;

24.6.2 DIFFERENCES
This is consistent with previous types implemented by the compiler.

246.3 MIGRATION TO THE CCI

If you require a C type that has a fixed size, regardless of the target device, use one of
the types defined by <stdint.h>.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 23

MPLAB® XC8 C Compiler Legacy User’s Guide

247 Plain char Types

The type of a plain char is unsigned char. Itis generally recommended that all
definitions for the char type explicitly state the signedness of the object.

2471 EXAMPLE

The following example
char foobar;

defines an unsigned char object called foobar.

24.7.2 DIFFERENCES

The 8-bit compilers have always treated plain char as an unsigned type.

The 16- and 32-bit compilers used signed char as the default plain char type. The
-funsigned-char option on those compilers changed the default type to be
unsigned char.

2473 MIGRATION TO THE CCI

Any definition of an object defined as a plain char and using the 16 or 32-bit compilers
needs review. Any plain char that was intended to be a signed quantity should be
replaced with an explicit definition, for example.

signed char foobar;

You can use the -funsigned-char option on MPLAB XC16 and XC32 to change the
type of plain char, but since this option is not supported on MPLAB XC8, the code is
not strictly conforming.

248 Signed Integer Representation

The value of a signed integer is determined by taking the two’s complement of the
integer.

2481 EXAMPLE

The following shows a variable, test, that is assigned the value -28 decimal.
signed char test = 0xE4;

2482 DIFFERENCES

All compilers have represented signed integers in the way described in this section.

2483 MIGRATION TO THE CCI

No action required.

24.9 Integer Conversion

When converting an integer type to a signed integer of insufficient size, the original
value is truncated from the Most Significant bit (MSb) to accommodate the target size.

2491 EXAMPLE

The following shows an assignment of a value that is truncated.

signed char destination;
unsigned int source = 0x12FE;
destination = source;

Under the CCI, the value of destination after the alignment is -2 (i.e., the bit pattern
OXFE).

DS50002053J-page 24

© 2012-2020 Microchip Technology Inc.

Common C Interface

2492 DIFFERENCES

All compilers have performed integer conversion in an identical fashion to that
described in this section.

2493 MIGRATION TO THE CCI

No action required.

2410 Bitwise Operations on Signed Values

Bitwise operations on signed values act on the two’s complement representation,
including the sign bit. See also Section 2.4.11 “Right Shifting Signed Values”.

2.410.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND
operation.

signed char output, input = -13;
output = input & O0x7E;

Under the CClI, the value of output after the assignment is 0x72.
24.10.2 DIFFERENCES

All compilers have performed bitwise operations in an identical fashion to that
described in this section.

2.410.3 MIGRATION TO THE CCI

No action required.

2411 Right Shifting Signed Values

Right shifting a signed value will involve sign extension. This will preserve the sign of
the original value.

24111 EXAMPLE

The following shows an example of a negative quantity involved in a right shift
operation.

signed char output, input = -13;
output = input >> 3;

Under the CCl, the value of output after the assignment is -2 (i.e., the bit pattern
OxFE).

24.11.2 DIFFERENCES

All compilers have performed right shifting as described in this section.

2.411.3 MIGRATION TO THE CCI

No action required.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 25

MPLAB® XC8 C Compiler Legacy User’s Guide

2412 Conversion of Union Member Accessed Using Member with
Different Type

If a union defines several members of different types and you use one member
identifier to try to access the contents of another (whether any conversion is applied to
the result), this is implementation-defined behavior in the standard. In the CCI, no con-
version is applied and the bytes of the union object are interpreted as an object of the
type of the member being accessed, without regard for alignment or other possible
invalid conditions.

24121 EXAMPLE

The following shows an example of a union defining several members.

union {
signed char code;
unsigned int data;
float offset;

} foobar;

Code that attempts to extract of £set by reading data is not ensured to read the
correct value.

float result;
result = foobbar.data;

24.12.2 DIFFERENCES

All compilers have not converted union members accessed via other members.

2.412.3 MIGRATION TO THE CCI

No action required.

2413 Default Bit Field int Type

The type of a bit field specified as a plain int is identical to that of one defined using
unsigned int. This is quite different from other objects, where the types int,
signedand signed int are synonymous. Itis recommended that the signedness of
the bit field be explicitly stated in all bit field definitions.

2.4.13.1 EXAMPLE

The following shows an example of a structure tag containing bit fields that are
unsigned integers and with the size specified.

struct OUTPUTS {
int direction :1;
int parity :3;
int value :4;
}i

2.4.13.2 DIFFERENCES

The 8-bit compilers have previously issued a warning if type int was used for bit fields,
but would implement the bit field with an unsigned int type.

The 16 and 32-bit compilers have implemented bit fields defined using int as having
a signed int type, unless the option -funsigned-bitfields was specified.

DS50002053J-page 26

© 2012-2020 Microchip Technology Inc.

Common C Interface

2.413.3 MIGRATION TO THE CCI

Any code that defines a bit field with the plain int type should be reviewed. If the inten-
tion was for these to be signed quantities, then the type of these should be changed to
signed int. For example, in the following example:
struct WAYPT {
int log :3
int direction 14

~e N

}:
the bit field type should be changed to signed int, asin:

struct WAYPT {
signed int log :3;

signed int direction :4;
}i

2414 Bit Fields Straddling a Storage Unit Boundary

The standard indicates that implementations can determine whether bit fields cross a
storage unit boundary. In the CCI, bit fields do not straddle a storage unit boundary; a
new storage unit is allocated to the structure and padding bits fill the gap.

Note that the size of a storage unit differs with each compiler, as this is based on the
size of the base data type (e.g., int) from which the bit field type is derived. On 8-bit
compilers, this unit is 8 bits in size, for 16-bit compilers, it is 16 bits and for 32-bit
compilers, it is 32 bits in size.

24141 EXAMPLE

The following shows a structure containing bit fields being defined.

struct {
unsigned first : 6;
unsigned second :6;
} order;

Under the CCl and using MPLAB XC8, the storage allocation unit is byte-sized. The bit
field, second, is allocated a new storage unit since there are only 2 bits remaining in
the first storage unit in which first is allocated. The size of this structure, order, is
2 bytes.

2.4.14.2 DIFFERENCES
This allocation is identical with that used by all previous compilers.

2.4.14.3 MIGRATION TO THE CCI

No action required.

2.415 The Allocation Order of Bit Fields

The memory ordering of bit fields into their storage unit is not specified by the ANSI C
Standard. In the CCl, the first bit defined is the Least Significant bit (LSb) of the storage
unit in which it is allocated.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 27

MPLAB® XC8 C Compiler Legacy User’s Guide

24151 EXAMPLE

The following shows a structure containing bit fields being defined.

struct {
unsigned lo : 1;
unsigned mid :6;
unsigned hi : 1;
} foo;

The bit field 1o is assigned the Least Significant bit of the storage unit assigned to the
structure foo. The bit field mid is assigned the next six Least Significant bits and h1i,
the Most Significant bit of that same storage unit byte.

2.4.15.2 DIFFERENCES
This is identical with the previous operation of all compilers.

2.4.15.3 MIGRATION TO THE CCI

No action required.

2416 The NULL Macro

The NULL macro is defined by <stddef . h>; however, its definition is
implementation-defined behavior. Under the CCI, the definition of NULL is the
expression (0).

2.416.1 EXAMPLE

The following shows a pointer being assigned a NULL pointer constant via the NULL
macro.

int * ip = NULL;

The value of NULL, (0), is implicitly converted to the destination type.

24.16.2 DIFFERENCES

The 32-bit compilers previously assigned NULL the expression ((void *)0).
2.4.16.3 MIGRATION TO THE CCI

No action required.

2417 Floating-Point Sizes

Under the CCI, floating-point types must not be smaller than 32 bits in size.

24171 EXAMPLE

The following shows the definition for outy, which is at least 32 bits in size.
float outY;

2.417.2 DIFFERENCES

The 8-bit compilers have allowed the use of 24-bit f1o0at and double types.

2.417.3 MIGRATION TO THE CCI

When using 8-bit compilers, the f1oat and double type will automatically be made
32 bits in size once the CCI mode is enabled. Review any source code that may have
assumed a float or double type and may have been 24 bits in size.

No migration is required for other compilers.

DS50002053J-page 28

© 2012-2020 Microchip Technology Inc.

Common C Interface

2.5 ANSI STANDARD EXTENSIONS

The following topics describe how the CCI provides device-specific extensions to the
standard.

2.51 Generic Header File

A single header file, <xc . h>, must be used to declare all compiler and device-specific
types, and SFRs. You must include this file into every module to conform with the CCI.
Some CCI definitions depend on this header being seen.

2511 EXAMPLE

The following shows this header file being included, thus allowing conformance with the
CCl, as well as allowing access to SFRs.

#include <xc.h>

2512 DIFFERENCES

Some 8-bit compilers used <htc.h> as the equivalent header. Previous versions of
the 16 and 32-bit compilers used a variety of headers to do the same job.

2.5.1.3 MIGRATION TO THE CCI

Change:
#include <htc.h>
previously used in 8-bit compiler code, or family-specific header files, e.g., from:

#include <p32xxxx.h>
#include <p30fxxxx.h>
#include <p33Fxxxx.h>
#include <p24Fxxxx.h>
#include "p30£f6014.h"

to:

#include <xc.h>

2.5.2 Absolute Addressing

Variables and functions can be placed at an absolute address by usingthe at ()
construct. Stack-based (auto and parameter) variables cannot use the at ()
specifier.

2521 EXAMPLE

The following shows two variables and a function being made absolute.

int scanMode at (0x200) ;

const char keys[] at(124) = { 'r’, 's’, 'u’, 'd"};

_at(0x1000) int modify(int x) {
return x * 2 + 3;

}
2522 DIFFERENCES

The 8-bit compilers have used an @ symbol to specify an absolute address.

The 16 and 32-bit compilers have used the address attribute to specify an object’s
address.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 29

MPLAB® XC8 C Compiler Legacy User’s Guide

2523 MIGRATION TO THE CCI

Avoid making objects and functions absolute if possible.

In MPLAB XC8, change absolute object definitions, e.g., from:
int scanMode @ 0x200;

to:

int scanMode _ at (0x200);

In MPLAB XC16 and XC32, change code, e.g., from:

int scanMode _ attribute ((address(0x200))):;

to:

int scanMode at (0x200) ;

25.24 CAVEATS
Ifthe at() and _section () specifiers are both applied to an object when using
MPLAB XC8, the section () specifier is currently ignored.

The at () specifier must be placed at the beginning of function prototypes for the 16
and 32-bit compilers. If you prefer to use the specifier at the end of the prototype, use
the specifier with a declaration and leave it off the definition, for example:

int modify(int x) _ at(0x1000);
int modify(int x)
{ ...}

253 Far Objects and Functions

The _ far qualifier can be used to indicate that variables or functions are located in
‘far memory’. Exactly what constitutes far memory is dependent on the target device,
but it is typically memory that requires more complex code to access. Expressions
involving far qualified objects usually generate slower and larger code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented; in which case, use of this
qualifier is ignored. Stack-based (auto and parameter) variables cannot use the
__far specifier.

2.5.3.1 EXAMPLE

The following shows a variable and function qualified using far:

__far int serialNo;
__far int ext getCond(int selector);

2.53.2 DIFFERENCES

The 8-bit compilers have used the qualifier far to indicate this meaning. Functions
could not be qualified as far.

The 16-bit compilers have used the far attribute with both variables and functions.
The 32-bit compilers have used the far attribute with functions only.

DS50002053J-page 30 © 2012-2020 Microchip Technology Inc.

Common C Interface

2.5.3.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the far qualifier, e.g., from:
far char template[20];

to:

__far,i.e., far char template[20];

In the 16 and 32-bit compilers, change any occurrence of the far attribute, e.g., from:

void bar (void) _ attribute ((far));
int tblIdx attribute ((far));
to:

void _ far bar(void);
int far tblIdx;

2534 CAVEATS

None.

254 Near Objects

The near qualifier can be used to indicate that variables or functions are located in
‘near memory’. Exactly what constitutes near memory is dependent on the target
device, butitis typically memory that can be accessed with less complex code. Expres-
sions involving near qualified objects generally are faster and result in smaller code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented; in which case, use of this
qualifier is ignored. Stack-based (auto and parameter) variables cannot use the
__near specifier.

2541 EXAMPLE

The following shows a variable and function qualified using near.

__near int serialNo;
__near int ext getCond(int selector);

2542 DIFFERENCES

The 8-bit compilers have used the qualifier near to indicate this meaning. Functions
could not be qualified as near.
The 16-bit compilers have used the near attribute with both variables and functions.

The 32-bit compilers have used the near attribute for functions only.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 31

MPLAB® XC8 C Compiler Legacy User’s Guide

2543 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the near qualifierto near, e.g., from:
near char template[20];

to:

__near char template[20];

In 16 and 32-bit compilers, change any occurrence of the near attribute to _ near,
e.g., from:

void bar(void) _ attribute ((near));
int tblIdx attribute ((near));

to:

void near bar(void);

int near tblIdx;

2544 CAVEATS

None.

255 Persistent Objects

The persistent qualifier can be used to indicate that variables should not be
cleared by the run-time start-up code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.
2551 EXAMPLE

The following shows a variable qualified using persistent.

__persistent int serialNo;

2552 DIFFERENCES

The 8-bit compilers have used the qualifier, persistent, to indicate this meaning.
The 16 and 32-bit compilers have used the persistent attribute with variables to
indicate they were not to be cleared.

2553 MIGRATION TO THE CCI

With 8-bit compilers, change any occurrence of the persistent qualifier to
__persistent, e.g., from:

persistent char template([20];
to:

__persistent char template[20];

For the 16 and 32-bit compilers, change any occurrence of the persistent attribute
to persistent, e.g., from:

int tblIdx attribute ((persistent));
to:

int persistent tblIdx;

2554 CAVEATS

None.

DS50002053J-page 32

© 2012-2020 Microchip Technology Inc.

Common C Interface

25.6 X and Y Data Objects

The xdataand ydata qualifiers can be used to indicate that variables are
located in special memory regions. Exactly what constitutes X and Y memory is depen-
dent on the target device, but itis typically memory that can be accessed independently
on separate buses. Such memory is often required for some DSP instructions.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have such memory implemented; in which case, use of these
qualifiers is ignored.

256.1 EXAMPLE

The following shows a variable qualified using xdata, as well as another variable
qualified with ydata.

__xdata char dataf[lé6];

__ydata char coeffs[4];

2.56.2 DIFFERENCES

The 16-bit compilers have used the xmemory and ymemory space attribute with
variables.

Equivalent specifiers have never been defined for any other compiler.

25.6.3 MIGRATION TO THE CCI

For 16-bit compilers, change any occurrence of the space attributes, xmemory or
ymemory,to xdata or _ ydata, respectively, e.g., from:

char attribute ((space(xmemory)))template[20];
to:
__xdata char template[20];

25.6.4 CAVEATS

None.

257 Banked Data Objects

The bank (num) qualifier can be used to indicate that variables are located in a
particular data memory bank. The number, num, represents the bank number. Exactly
what constitutes banked memory is dependent on the target device, but it is typically a
subdivision of data memory to allow for assembly instructions with a limited address
width field.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have banked data memory implemented; in which case, use of
this qualifier is ignored. The number of data banks implemented will vary from one
device to another.

2571 EXAMPLE

The following shows a variable qualified using bank ().

__bank(0) char start;
__bank(5) char stop;

© 2012-2020 Microchip Technology Inc. DS50002053J-page 33

MPLAB® XC8 C Compiler Legacy User’s Guide

2572 DIFFERENCES

The 8-bit compilers have used the four qualifiers, bank0, bank1, bank2 and bank3,
to indicate the same, albeit more limited, memory placement.

Equivalent specifiers have never been defined for any other compiler.

25.7.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the bankx qualifiersto _ bank (), e.g.,
from:

bank2 int logEntry;
to:
__bank(2) int logEntry;

25.74 CAVEATS
This feature is not yet implemented in MPLAB XC8.

2.5.8 Alignment of Objects

The align(alignment) specifier can be used to indicate that variables must be
aligned on a memory address that is a multiple of the alignment specified. The align-
ment term must be a power of two. Positive values request that the object’s start
address be aligned; negative values imply the object’s end address be aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.
2581 EXAMPLE

The following shows variables qualified using align () to ensure they end on an
address that is a multiple of eight and start on an address that is a multiple of two,
respectively.

__align(-8) int spacer;
__align(2) char coeffs[6];

2.5.8.2 DIFFERENCES

An alignment feature has never been implemented on 8-bit compilers.
The 16 and 32-bit compilers used the aligned attribute with variables.

2583 MIGRATION TO THE CCI

For 16 and 32-bit compilers, change any occurrence of the aligned attribute to
__align, e.g., from:

char _ attribute ((aligned(4)))mode;

to:

__align(4) char mode;

2584 CAVEATS

This feature is not yet implemented on MPLAB XCS8.

DS50002053J-page 34 © 2012-2020 Microchip Technology Inc.

Common C Interface

259 EEPROM Objects

The eeprom qualifier can be used to indicate that variables should be positioned in
EEPROM.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not implement EEPROM. Use of this qualifier for such devices
generates a warning. Stack-based (auto and parameter) variables cannot use the
___eepromn specifier.

2591 EXAMPLE

The following shows a variable qualified using eeprom.

__eeprom int serialNos[4];

2592 DIFFERENCES

The 8-bit compilers have used the qualifier, eeprom, to indicate this meaning for some
devices.

The 16-bit compilers have used the space attribute to allocate variables to the memory
space used for EEPROM.

2593 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the eeprom qualifierto eeprom, e.g.,
from:

eeprom char title[20];
to:

__eeprom char title[20];

For 16-bit compilers, change any occurrence of the eedata space attribute to
__eepromn, e.g., from:

int mainSw __ attribute ((space(eedata)));
to:
int eeprom mainSw;

2594 CAVEATS

MPLAB XC8 does not implement the eeprom qualifiers for any PIC18 devices; this
qualifier works as expected for other 8-bit devices.

© 2012-2020 Microchip Technology Inc. DS50002053J-page 35

MPLAB® XC8 C Compiler Legacy User’s Guide

2.5.10

The interrupt (type) specifier can be used to indicate that a function is to act as
an Interrupt Service Routine (ISR). The type is a comma separated list of keywords
that indicate information about the interrupt function.

Interrupt Functions

The current interrupt types are:

<empty> Implement the default interrupt function.

low_priority The interrupt function corresponds to the low-priority interrupt
source.
(MPLAB XC8 — PIC18 only)

high_priority The interrupt function corresponds to the high-priority interrupt
source.
(MPLAB XC8)

save(symbol-list) | Save the listed symbols on entry and restore on exit.
(MPLAB XC16)

irq(irqid) Specify the interrupt vector associated with this interrupt.
(MPLAB XC16 and XC8)

altirq(altirqgid) Specify the alternate interrupt vector associated with this
interrupt.
(MPLAB XC16)

base(address) Specify vector table address.
(MPLAB XC8)

Specify assembly code to be executed before any
compiler-generated interrupt code.
(MPLAB XC16)

preprologue(asm)

shadow Allow the ISR to ut