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1. Product Overview 

Witty Pi is an add-on board that adds realtime clock and power management to your Raspberry Pi. It 

can define your Raspberry Pi’s ON/OFF sequence, and significantly reduce the energy usage. Witty 

Pi 4 Mini is the fourth generation of Witty Pi and it has these hardware resources onboard: 

• Factory calibrated and temperature compensated realtime clock with ±2ppm accuracy. 

• Dedicated temperature sensor with 0.125 °C resolution. 

• AVR 8-bit microcontroller (MCU) with 8 KB programmable flash. 

 

Witty Pi 4 Mini has very similar design with Witty Pi 4, however it doesn’t come with a DC/DC 

converter onboard, and it uses super capacitor for RTC time keeping when no power supply is 

connected. Witty Pi 4 Mini has solder pads on the back, which allow you to solder a DC/DC converter 

(LDO or switching DC/DC converter) there. 

  

https://www.uugear.com/product/witty-pi-4/
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1.1 Accurate Realtime Clock and ON/OFF Scheduling 

The realtime clock (RTC) on Witty Pi 4 Mini has been calibrated in the factory and Witty Pi 4 Mini’s 

firmware also makes temperature compensation for the crystal. This makes the RTC very accurate 

and the actual annual error is limited within ±2ppm (about 1 minute per year). When your Raspberry 

Pi boots up, the time stored in the RTC will overwrite the system time. As a result, your Raspberry Pi 

knows the correct time even without accessing the Internet. 

You can schedule the startup and/or shutdown of your Raspberry Pi, and make it a time-controlled 

device. You can even define a schedule script to schedule complicated ON/OFF sequence for your 

Raspberry Pi. 

 

Scheduling the ON/OFF sequence for Raspberry Pi is the most popular feature of Witty Pi, and it is 

extremely useful for systems that powered by battery. By only turning on Raspberry Pi when 

necessary, the battery can work much longer with Witty Pi installed. 

 

1.2 Temperature Controlled Device 

The temperature sensor on Witty Pi 4 Mini has 0.125 °C resolution. The temperature data is used for 

compensating the crystal and make the RTC more accurate. 

You can also specific the action (startup or shutdown) when temperature goes above or below the 

preset threshold. Which means you can also make your Raspberry Pi a temperature-controlled 

device. 
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1.3 e-Latching Power Switch 

Witty Pi 4 Mini implements an e-Latching power switch, which is very similar to the power switch on 

your PC/laptop computer. You can gracefully turn on/off your Raspberry Pi with a single tap on the 

button. The software running in background will execute the shutdown command before the power 

gets cut, and it avoids the data corruption caused by “hard” shutdown. 
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1.4 Interface Introduction 

Witty Pi 4 Mini supports all Raspberry Pi models that has the 40-pin GPIO header, including A+, B+, 

2B, Zero, Zero W, Zero 2 W, 3B, 3B+, 3A+ and 4B. You will need to solder the 40-pin header to 

Zero/Zero W/Zero 2 W model beforehand, so they can make reliable connection with Witty Pi. 

The picture below shows the available interfaces of Witty Pi 4 Mini. 

 

1. USB type C connector for 5V power input (5V) 

2. Super capacitor for off-power time keeping 

3. Unpopulated 7-pin header for extension or integration 

4. Red LED as power indicator 

5. On/off switch 

6. White LED as status indicator 

7. 2x20 pin stacking header for connecting to Raspberry Pi 

8. Unpopulated power header with VIN, 5V and GND 

9. Unpopulated 7-pin header for internal I2C bus and extra signals 

10. ICSP header for uploading firmware (on the back) 
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2. Specification / Technical Details 

Dimension 65mm x 30mm x 4mm 

Weight 9g (net weight without accessories) 

Microcontroller ATtiny841 (datasheet) 

Realtime Clock PCF85063A (datasheet), calibrated in factory. 

Temperature Sensor LM75B (datasheet) 

MOSFET Switch AO4620 (datasheet) 

Super Capacitor 0.07F 

Power In DC 5V (via USB type C connector) or 5V in unpopulated header P2 

Output Current Up to 2.5A for Raspberry Pi and its peripherals 

Standby Current ~0.5mA 

Operating 

Environment 

Temperature -30°C~80°C (-22°F~176°F) 

Humidity 0~80%RH, no condensing, no corrosive gas 

 

3. Package Content 

Each package of Witty Pi 4 Mini contains: 

⚫ Witty Pi 4 Mini board x 1 

⚫ M2.5 x 10mm plastic screws x 4 

⚫ 4mm plastic spacer x 4 

⚫ M2.5 plastic nut x 4 

  

http://www.uugear.com/doc/datasheet/ATtiny841.pdf
https://www.uugear.com/doc/datasheet/PCF85063A.pdf
https://www.uugear.com/doc/datasheet/LM75B.pdf
https://www.uugear.com/doc/datasheet/AO4620.pdf
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4. How Does Witty Pi Work? 

The diagram below shows the basic workflow of how Witty Pi turns on/off your Raspberry Pi. 

 

After you tap the button on Witty Pi, it powers your Raspberry Pi via the GPIO header, and your 

Raspberry Pi will boot. Witty Pi’s software will run automatically after boot, which will send the 

SYS_UP signal (via GPIO-17) to Witty Pi. Witty Pi’s firmware receives the SYS_UP signal and starts 

to listen to Raspberry Pi’s TXD pin (GPIO-14). If you shut down your Raspberry Pi (running shutdown 

command or choose “Shutdown” in GUI), the TXD pin will go LOW and Witty Pi will cut the power 

after some delay. If you tap the button again, that equals to shorting GPIO-4 to GND, and Witty Pi’s 

software will run shutdown command for you. 

Witty Pi has realtime clock (RTC) onboard and it always knows the time. You can schedule the 

shutdown and startup of your Raspberry Pi, which are implemented with two alarms. When the alarm 

is triggered, Witty Pi’s firmware will emulate a “button clicking”, which will turn on/off your Raspberry 

Pi accordingly. You can either configure single alarm for shutdown and/or startup, or you can define a 

simple script to plan a rather complex on/off sequence for your Raspberry Pi. 

Witty Pi has Analogue to Digital Converter (ADC) in its microcontroller (MCU), which can measure 

the input voltage (VIN in unpopulated header P2). If the voltage drops below the preset threshold, 

Witty Pi’s firmware will emulate a “button clicking” to turn off your Raspberry Pi. If the voltage is 

raised above the preset threshold, Witty Pi’s firmware will emulate another “button clicking” to turn on 

your Raspberry Pi again. This allows you to turn off/off your Raspberry Pi according to input voltage, 

and it works even without soldering a DC/DC converter to your Witty Pi 4 Mini. 

Witty Pi also has temperature sensor onboard. If the temperature rises over the preset threshold, 

Witty Pi’s firmware can emulate a “button clicking” to turn off or turn on your Raspberry Pi. If the 

temperature drops below the preset threshold, Witty Pi can also turn on/off your Raspberry Pi. You 

can define the complete logic according to your needs, and turn your Raspberry Pi to a 

temperature-controlled device. 
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5. Software Installation, Updating and Uninstallation 

Remarks: Witty Pi’s software is developed and tested under Raspberry Pi OS (the former 

Raspbian). If you want to use Witty Pi on other Linux distributions, you may not be able to install the 

software without error. This is due to the fact that different Linux distributions have different packages 

installed by default, and their default users may have different privilege settings too. You may need to 

modify the software installation script or even the software itself, however this will need you to have 

some knowledge of BASH programing. 

5.1 Install Software 

To install the software, please run this command to download the installation script: 

 

Then you can run the command below to install the software: 

 

We use “sudo” here because install.sh needs to register the wittypi service (daemon.sh) to run 

automatically after boot, which needs root privilege. 

The install.sh will also run UWI installation script. If you already have UWI installed before, it will 

compare the versions and update your UWI when needed. 

5.2 Update Software 

If there is a newer version of software and you want to install it, in most of the time you just need to 

repeat the installation process and let it overwrite your current version. 

If you prefer, you can also fully uninstall the software (please see below) and then install it again. 

5.3 Uninstall Software 

To uninstall the software, you need to remove the “wittypi” directory (the one that includes the 

software files) and remove wittypi service from the auto-run list. Please use this command: 

 

If you also want to uninstall UWI, you need to remove the “uwi” directory and remove uwi service 

from the auto-run list. Please use this command: 

pi@raspberrypi:~ $ wget https://www.uugear.com/repo/WittyPi4/install.sh 

pi@raspberrypi:~ $ sudo sh install.sh 

pi@raspberrypi:~ $ update-rc.d -f wittypi remove 
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6. Mounting Witty Pi 4 Mini on Raspberry Pi 

6.1 Mounting Witty Pi 4 Mini on Raspberry Pi Zero 

If you want to use Witty Pi 4 Mini on Raspberry Pi Zero (V1.2, V1.3, W and 2W), you will need to 

solder the 20x2 pin male header on it first, or you can buy one with the header soldered already. 

Remarks: putting the header in place will not be enough, and you have to solder it. 

 

You can simply mount Witty Pi 4 Mini on your Raspberry P Zero’s 40-pin header, and it can work just 

like that. However, if you wish, you can use the plastic screws, spacers and nuts in the package to 

tightly mount Witty Pi 4 Mini on your Raspberry Pi Zero. Please make sure NOT to put Witty Pi 4 Mini 

up-side-down, and the 40 pins on Raspberry Pi should connect to the female header via the holes 

underneath Witty Pi 4 Mini, as shown in figure below. 

 

pi@raspberrypi:~ $ update-rc.d -f uwi remove 
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6.2 Mounting Witty Pi4 Mini on Other Raspberry Pi Models 

Other Raspberry Pi models (A+, B+, 2B, 3B, 3B+ and 4B) have the 40 pin header soldered already, 

so it is possible to directly mount Witty Pi 4 Mini over them. However, because of the existence of 

display connector, you will not be able to firmly connect them. 

 

In order to make reliable connection, we suggest to use a stacking pin header (not included in the 

package). 

 

Those 40 extra-long pins on stacking header should reach the female header via the holes on the 

back of Witty Pi 4 Mini (as shown in figure above). You can then place a steel ruler (or something 

similar) between the two rows of pins and push Witty Pi 4 Mini down until it reaches the plastic of the 

stacking header, as shown in figure below:  

 

http://www.uugear.com/product/gpio-stacking-header-for-rpi-2x20pins/
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After mounting Witty Pi 4 Mini on your Raspberry Pi, and connect the power supply to the USB type 

C connector on Witty Pi 4 Mini, you can see the white LED blinking, which means it is standing 

by. Please do not connect power supply to your Raspberry Pi directly, because Witty Pi will 

power your Raspberry Pi via the GPIO header, and that is how it performs the power management. 

 

 

Now your Witty Pi 4 Mini is ready to go. 

If you want to take off the stacking header from Witty Pi 4 Mini, the proper way is to put your Witty Pi 

4 Mini up-side-down, and let the 40 pins contact a flat surface (e.g. desktop), hold the two edges of 

the board and press down. That way the stacking header will be taken off safely. See the figure 

below: 
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7. Software Usage 

The main executable (wittyPi.sh) is a bash script, and you can run it like this: 

 

This interactive script displays the status of the device, and accepts your input to make configuration 

accordingly.

 

There are 13 options in the main menu, and you can input the number and press ENTER to confirm. 

Every time you press ENTER, the script will re-print the device status so you can see if the change 

has taken affect. 

7.1 Write system time to RTC 

This option will copy the time from your Raspberry Pi system to the Realtime Clock on Witty Pi. This 

pi@raspberrypi:~/wittypi $ ./wittyPi.sh 

pi@raspberrypi:~/wittypi $ ./wittyPi.sh  

================================================================================ 

|                                                                              | 

|   Witty Pi - Realtime Clock + Power Management for Raspberry Pi              | 

|                                                                              | 

|            < Version 4.00 >     by Dun Cat B.V. (UUGear)                     | 

|                                                                              | 

================================================================================ 

>>> Current temperature: 35.625°C / 96.125°F 

>>> Your system time is: 2022-05-15 11:14:18 CEST 

>>> Your RTC time is:    2022-05-15 11:14:17 CEST 

>>> Vout=5.00V, Iout=0.51A 

Now you can: 

  1. Write system time to RTC 

  2. Write RTC time to system 

  3. Synchronize with network time 

  4. Schedule next shutdown 

  5. Schedule next startup 

  6. Choose schedule script 

  7. Set low voltage threshold 

  8. Set recovery voltage threshold 

  9. Set over temperature action 

 10. Set below temperature action 

 11. View/change other settings... 

 12. Reset data... 

 13. Exit 

What do you want to do? (1~13) 
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option should be used when you find the Raspberry Pi system time is correct (may be synchronized 

from the Internet) while the RTC time is not correct. 

7.2 Write RTC time to system 

This option will copy the time from the Realtime Clock on Witty Pi to your Raspberry Pi system. This 

option should be used when you find the RTC time is correct while the system time is not correct. 

7.3 Synchronize time 

If you choose this option, it will check if Internet is accessible, and apply network time to Raspberry Pi 

system and RTC when possible. 

If your Raspberry Pi is not connected to Internet, choosing this option will do nothing. 

7.4 Schedule next shutdown 

This option allows you to specify when your Raspberry Pi should shutdown automatically. 

Please notice the input format should be “DD HH:MM:SS”. DD means the day in the month, HH is the 

hour, MM is the minute and SS is the second. All these should be 2 digits and 24-hour system should 

be used. 

Different than the previous version of Witty Pi, the “??” wildcard is no longer supported. This is 

because the alarms are now implemented by the micro controller, and the MCU does not have 

enough resource to implement this wildcard. However, you can use schedule script to do what “??” 

wildcard does. Please refer the Migrating from Witty Pi 3 Mini to Witty Pi 4 Mini chapter. 

Schedule script can actually make much more complex schedule. You can find more details in 

Schedule Script section. 

7.5 Schedule next startup 

This option allows you to specify when your Raspberry Pi should startup automatically.  

Here you will need to input the startup time in the same “DD HH:MM:SS” format, and again the “??” 

wildcard is not supported here. You can use schedule script to do the same and even better. 

7.6 Choose Schedule Script 

If you want to define a complex ON/OFF sequence for your Raspberry Pi, you should schedule 

script. 

A schedule script (.wpi file) defines a loop, with all states and their durations inside. After Raspberry 

Pi is boot, the “runScript.sh” will be run automatically, which will schedule the next shutdown and next 

startup for you, and hence a complex ON/OFF sequence could be achieved. 
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After you select the “Choose schedule script” option, it will list all schedule scripts in the “schedules” 

folder. You can choose one, and then Witty Pi will load and run it. 

If you want to confirm what the script is doing, you can check the “schedule.log” file in the “~/wittypi” 

directory, when your Raspberry Pi is running. 

If you want to create your own schedule script, please read the “Making Schedule Script” section. 

7.7 Set low voltage threshold 

If you connect the VIN pin in P2 to an external voltage source, Witty Pi 4 Mini will monitor that voltage. 

If that voltage goes below the low voltage threshold, Witty Pi 4 Mini will shut down your Raspberry Pi. 

Here you can specify the low voltage from 2.0V to 25.0V. If you want to disable the low voltage 

threshold, just set it to 0. 

This functionality can work even without soldering a DC/DC converter to your Witty Pi 4 Mini. 

7.8 Set recovery voltage threshold 

If you connect the VIN pin in P2 to an external voltage source, Witty Pi 4 Mini will monitor that voltage. 

If that voltage goes above the recovery voltage threshold, Witty Pi 4 Mini will turn on your Raspberry 

Pi if it was previously shut down due to too low input voltage. Here you can specify the recovery 

voltage from 2.0V to 25.0V. If you want to disable the recovery voltage threshold, just set it to 0. 

This functionality can work even without soldering a DC/DC converter to your Witty Pi 4 Mini. 

Remarks: the low voltage threshold and recovery voltage threshold can be set individually and their 

combinations will make Witty Pi work differently. 

Low 

Voltage 

Recovery 

Voltage 
Result 

Not Set Not Set Witty Pi doesn’t care about the input voltage changing. 

Set Not Set Witty Pi will shut down your Raspberry Pi if input voltage is too low. It will not turn on 

Raspberry Pi unless you tap the button, or the scheduled startup comes (given input 

voltage is higher than low voltage threshold). 

Set Set Witty Pi will shut down your Raspberry Pi if input voltage is too low. Once this happens, 

Witty Pi will monitor the input voltage during the sleep and will turn on your Raspberry Pi 

when input voltage gets higher than recovery voltage threshold. 

Not Set Set Witty Pi will wake up your Raspberry Pi when input voltage is higher than recovery 

voltage threshold. Please mind that if input voltage is always higher than recovery voltage 

threshold, you will not be able to turn off your Raspberry Pi with these settings, because it 

always turns on Raspberry Pi again just after shutting it down. 
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The low voltage threshold and recovery voltage threshold can be set individually and their 

combinations will make Witty Pi works differently, please see the table below for details. 

7.9 Set over temperature action 

Here you can specify what to do if temperature exceeds a preset threshold. It does nothing by default, 

but you can choose to shut down or startup your Raspberry Pi when this event happens. 

The action you chose will be triggered when the temperature is higher than the temperature you 

input. For example, if you input 55C here, the action will be triggered when actual temperature is 

56C or higher. 

Remarks: shutdown can be triggered by temperature only after 2 minutes since Raspberry Pi is on. 

7.10 Set below temperature action 

Here you can specify what to do if temperature drops under a preset threshold. It does nothing by 

default, but you can choose to shut down or startup your Raspberry Pi when this event happens. 

The action you chose will be triggered when the temperature is lower than the temperature you input. 

For example, if you input 55C here, the action will be triggered when actual temperature is 54C or 

lower. 

Remarks: shutdown can be triggered by temperature only after 2 minutes since Raspberry Pi is on. 

7.11 View/change other settings... 

Choosing this option will display a sub menu and allows you to set these parameters: 

• Default state when powered 

It is “OFF” by default, which means your Raspberry Pi will not be turned on when power 

supply is connected to Witty Pi, and you will need to tap the button on Witty Pi to start it. Here 

you can set it to 1 (ON) or 0 (OFF). 

• Power cut delay after shutdown 

Default value is 5.0 seconds, which means Witty Pi will fully cut the power after 5 seconds 

since Raspberry Pi has been shut down. Here you can input a number between 0.0 to 25.0. 

• Pulsing interval during sleep 

This parameter will decide how long Witty Pi’s micro controller will wake up and drive the 

white LED and/or the dummy load. By default, this interval is 4 seconds. If you wish the white 

LED blinks slower, or the dummy load draws current less frequently, you can choose a bigger 

value. This value is in seconds.  

• White LED duration 

This parameter will decide how long the white LED should stay on, when Witty Pi blinks it 

during the sleep. The default value is 100, and you can use bigger value if you wish the white 
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LED to stay on for longer. Here you can input number from 0 to 255. If you input 0, the white 

LED will not blink at all. 

• Dummy load duration 

This parameter will decide how long the dummy load should draw current from the power 

source.  

What is (pulsing) dummy load? It is a trick to keep power bank alive, when Raspberry Pi is off. 

If you are using power bank to power Witty Pi 4 Mini + Raspberry Pi, after turning off 

Raspberry Pi and cut the power, Witty Pi 4 Mini only draws about 1mA from the power bank, 

which is way too small to keep the power bank alive. If the power bank goes to sleep mode, it 

will not provide any power to Witty Pi 4 Mini and hence your Raspberry Pi will not wake up 

when scheduled startup is due. Pulsing dummy load is such a trick, that it draws rather big 

current from the power bank for a short duration and it does so with a fixed interval. That way 

the power bank might be fooled and think the load is heavy enough, and avoid entering the 

sleep mode. 

The default value of dummy load duration is 0, which means disabled (no dummy load at all). 

You can set a value between 0 and 255 here. However, we suggest using smallest value 

that could keep your power bank alive, usually 10 will do. 

• Vin adjustment 

The voltage is measured by the 10-bit ADC in micro controller. Due to the inaccuracy of 

internal voltage standard and error on divider resistors, the result could have up to 5% error. 

You can configure this parameter to adjust the result of voltage measurement. 

The default value is set to 0.20V, and you can input a value between -1.27 and 1.27 here.  

• Vout adjustment 

You can configure this parameter to adjust the result of output voltage measurement. 

The default value is set to 0.20V, and you can input a value between -1.27 and 1.27 here. 

• Iout adjustment 

The output current is calculated by measuring the voltage drop on the 0.05 Ohm sampling 

resistor. You can configure this parameter to adjust the result of output current calculation. 

The default value is set to 0.00A, and you can input a value between -1.27 and 1.27 here. 

7.12 Reset Data… 

If you want to erase some data you previously set (scheduled startup time, scheduled shutdown time, 

currently used schedule script, low voltage threshold, recovery voltage threshold), you can choose 

this option. 

Once you select this option, the software will display a sub menu, which allows you to: 

⚫ Clear auto startup time: 

The auto-startup time will be erased and Witty Pi will not auto-start your Raspberry Pi. 
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⚫ Clear auto shutdown time: 

The auto-shutdown time will be erased and Witty Pi will not auto-shutdown your Raspberry Pi. 

⚫ Stop using schedule script: 

The “schedule.wpi” file will be deleted. 

⚫ Clear low voltage threshold: 

The low voltage threshold will be unset. 

⚫ Clear recovery voltage threshold 

The recovery voltage threshold will be unset. 

⚫ Clear over temperature action 

The over temperature action will be cleared. 

⚫ Clear below temperature action 

The below temperature action will be cleared. 

⚫ Perform all actions above: 

Clear all scheduled times, remove the “schedule.wpi” file, unset the low voltage and recovery 

voltage thresholds, clear the over-temperature and below temperature actions. This is the 

fastest option to clear everything and prevent your Raspberry Pi being shut down by Witty Pi. 

7.13 Exit 

Selecting this option will exit the software and return to the console. 
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8. Using UWI (UUGear Web Interface) 

UWI is a mini web server that uses very little system resource, while it allows you to monitor and 

configure your Witty Pi board via any device that can access the network, including mobile phones 

and tablets. 

By default, UWI can be accessed via http://raspberrypi:8000/wittypi4/. If you cannot access it, most 

probably is because the host name “raspberrypi” is not resolved in your network environment. In 

such case, please configure your UWI to use actual IP address or accessible host name. You can 

also run the “diagnose.sh” script in “uwi” directory to do so automatically. 

 

In UWI, your Witty Pi 4 Mini device is presented like this: 

 
 

Here you can monitor and control your Witty Pi 4 Mini device like using a website. 

  

pi@raspberrypi:~/uwi $ ./diagnose.sh 

http://raspberrypi:8000/wittypi4/
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9. About Schedule Script 

Besides manually schedule the next shutdown/startup time, you can also use a schedule script to 

plan the ON/OFF sequence for your Raspberry Pi. A schedule script is a text file with .wpi file 

extension. Witty Pi’s software will load and execute it automatically after Raspberry Pi is boot up. 

9.1 How does Schedule Script Work? 

A schedule script defines a loop, and it put a serial of ON/OFF states into it. The duration of each 

state is also specified. At the end of ON state, there should be a scheduled shutdown, while at the 

end of OFF state, there should be a scheduled. All states in the schedule script will be executed in 

sequence and repeatedly, until the END time of the loop is reached. 

 

Every time your Raspberry Pi wakes up, it has a chance to run the runScript.sh file, which loads the 

schedule script (“schedule.wpi” file) and run it. If the current time doesn’t reach the END time defined 

in the schedule script, the next shutdown and next startup will be scheduled automatically. When 

your Raspberry Pi is wakened at scheduled startup time, it will repeat this process and schedule the 

next shutdown and startup. Although a schedule script only defines a few ON/OFF states, they could 

become many ON/OFF states in reality. 
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Please keep in mind that, running the same schedule script at different moment may get different 

result, as the “runScript.sh” will search and find the proper state according to current time. 

 

When the “runScript.sh” is executed, if the current time is located at an “OFF” state instead, it will 

take the next “ON” state as the current state, because it knows Raspberry Pi is currently ON. 

 

This “shifting ON state” behavior confuses some users, because the actual scheduled 

shutdown/startup times are different than what they expected. In such case you can adjust the 

BEGIN time of the schedule script, and you will see the scheduled shutdown/startup times will move 

accordingly. 
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9.2 Make Your Own Schedule Script 

A schedule script is actually a text file, and you can use any text editor to create and edit it.  

Below is a very simple schedule script and it will keep your Raspberry Pi on for 5 minutes in every 20 

minutes. 

 

Like many other scripting languages, Witty Pi’s schedule script also uses “#” to make single line 

comment. 

The first two lines define the time range for executing the script. Please make sure to use the correct 

time format (YYYY-mm-DD HH:MM:SS). You can use one or more white characters (space or tab) 

between BEGIN/END and the time string. 

The rest of the script defines the states in the loop. It could be “ON” or “OFF”, and you should define 

at least one “ON” and one “OFF” states in the loop. The ON and OFF states are used in pair. 

You should also specify the duration of each state. You can do so by putting one or more parameters 

after ON/OFF text, separated by space or tab. Each parameter starts with a capital letter and follows 

by a number, where the capital letter is the unit of time: 

⚫ D = Days (D2 means 2 days) 

⚫ H = Hours (H3 means 3 hours) 

⚫ M = Minutes (M15 means 15 minutes) 

⚫ S = Seconds (S30 means 30 seconds) 

For example, if you wish to define an ON state for one and a half hours, you can write: 

ON  H1  M30 

When the script engine executes this line, it will schedule a shutdown at the end of the ON state. 

If you wish to define an OFF state for two days, you can write: 

OFF D2 

When this line gets executed, a startup will be scheduled at the end of the OFF state. 

# Turn on Raspberry Pi for 5 minutes, in every 20 minutes 

BEGIN 2021-08-01 00:00:00 

END 2025-07-31 23:59:59 

ON  M5  # keep ON state for 5 minutes 

OFF M15 # keep OFF state for 15 minutes 
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Sometimes you may want to skip certain scheduling of shutdown/startup, and let your own program 

to do the job. This can be achieved by using the WAIT syntax. For example: 

ON    M15  WAIT 

This will keep your Raspberry Pi ON and no shutdown will be scheduled after 15 minutes, because 

there is a WAIT at the end of the line. The parameter M15 is here only to make sure the next OFF 

state can be calculated correctly and next shutdown can be scheduled properly. 

Once you use WAIT in the ON state, you (or your program) are responsible for the shutdown of your 

Raspberry Pi. If you use WAIT in the OFF state, you will need to turn on your Raspberry Pi (manually 

or via external electronic switch).  

After installing the software, there are some schedule scripts in the “schedules” directory, and they all 

have comments inside to explain themselves. You can take them as example to learn how to create 

the Witty Pi schedule script. 
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9.3 Using Schedule Script Generator 

You can also use our web application to create your schedule script. Just simply open this URL in 

your web browser: 

https://www.uugear.com/app/wittypi-scriptgen/ 

This web application allows you to visually create the schedule script, and it immediately generate 

the final code on the right. 

You can also click the “Run Now” button to preview how the schedule script will work. Alternatively, 

you can click the “Run at…” button and specify the moment to run the script. 

  

https://www.uugear.com/app/wittypi-scriptgen/
https://www.uugear.com/app/wittypi-scriptgen/
http://www.uugear.com/app/wittypi-scriptgen/
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9.4 Advanced Usage of Schedule Script 

Besides choosing the schedule script from wittyPi.sh, you can also use schedule script without the 

help from wittyPi.sh. Just copy the schedule script file to “~/wittypi/schedule.wpi” and then run 

“./runScript.sh” in the “~/wittypi” directory, the script will start to work. This allows you to use schedule 

script as an interface, to integrate other tools with Witty Pi together. For example, you can create 

your own tool to visually create a schedule script, or remotely generate the schedule script via a web 

interface.  
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10. Know More about the Realtime Clock 

Witty Pi 4 Mini uses PCF85063A realtime clock for time keeping. The realtime clock has been 

calibrated in factory, and can reach ±2ppm accuracy. The workflow to calibrate the realtime clock 

can be found in chapter 8.2.3.3 in PCF85064A’s datasheet. 

10.1 Super Capacitor and Time Keeping 

Witty Pi 4 Mini uses a 0.07F super capacitor for off-power time keeping. Which means the realtime 

clock can still keep the correct time after you disconnect power supply from Witty Pi 4 Mini. 

This super capacitor only powers the realtime clock chip (PCF85063), which only draws ~0.22µA 

current. The super capacitor can keep time for about 17 hours without external power supply 

connected.  

If your Witty Pi 4 Mini always have power supply connected, you don’t need to worry about losing 

time. The realtime clock will not lose the correct time when Raspberry Pi is off, because the realtime 

clock is still powered by the connected power supply. The super capacitor is helpful when you need 

to move the device to another site, or your device experiences power failure. 

10.2 Alarms and Alarm Output 

Witty Pi needs two alarms (one for scheduled startup and one for scheduled shutdown), but 

PCF85063A has only one. That’s why we implemented two alarms in the firmware instead. This also 

brings an advantage that both alarms now can be accurate to seconds. 

The ALM/ALARM in unpopulated header P3 is connected to the alarm output of realtime clock. This 

pin will stay in 3.3V level and will be pulled to 0V when an alarm occurs. This signal is for integration 

purpose, so other systems can know whether Witty Pi 4 Mini has triggered an alarm. 

Because the realtime clock itself only has one alarm, Witty Pi 4 Mini’s firmware always copies the 

nearly overdue alarm data to the realtime clock, so both alarms can trigger the ALM/ALARM signal. 

10.3 Temperature Compensation 

In order to get even better accuracy, Witty Pi 4 Mini’s firmware also makes temperature 

compensation for the crystal it uses. The temperature compensation bases on the fact that the actual 

frequency of the crystal changes according to the temperature. The frequency-temperature curve 

has been measured and the data are used for such compensation. 

https://www.uugear.com/doc/datasheet/PCF85063A.pdf
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The orange curve is the actual measured temperature – frequency error curve. Witty Pi 4 Mini’s 

firmware uses the green four-segment line to approximate the actual curve for temperature 

compensation. 
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11. Additional Interfaces 

11.1 The Unpopulated 3-Pin Header (P2) 

On the left edge of Witty Pi 4 Mini board, there is an unpopulated 3-pin header, and you can solder a 

male or female connector here. 

 

You can either input 5V between the “5V” and GND pins, or input a non-5V voltage between the “VIN” 

and “GND” pins. 

The VIN pin in this header is to input a voltage to power Witty Pi (with DC/DC converter soldered on 

the back) or to let Witty Pi to monitor the voltage (to shut down and startup the device according to 

voltage). 

 

11.2 The Unpopulated 7-Pin Header on the Top (P3) 

On the upper edge of Witty Pi 4 Mini board, there is an unpopulated 7-pin header, and you can solder 

a male or female connector here. 

    

(Front View)                    (Back View) 

This header breaks out some useful signals and is very helpful for extension and integration. The 

pins from left to right (at top view) are VOUT, 3V3, LED, ALARM, SWITCH, CATHODE and GND. 

VOUT 

This pin is actually connected to the +5V pin in Raspberry Pi’s GPIO header, which is also the output 

voltage of Witty Pi 4 Mini board. You can also know whether your Raspberry Pi is in ON state by 

measuring this voltage. 

Please notice that your Raspberry Pi is powered by the voltage between VOUT and CATHODE. 

The GND in this header is the ground for Witty Pi 4 Mini, but not the ground for Raspberry Pi. 
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If there is another device need to get powered (by 5V) with Raspberry Pi together, you can connect it 

to this VOUT and CATHODE pins. 

3V3 

It is 3.3V voltage on Witty Pi 4 Mini board that powers the micro controller, RTC and temperature 

sensor. It has nothing to do with the 3.3V pin in Raspberry Pi’s GPIO header. 

LED 

It is connected to the anode of the white LED. You can use this pin to connect your own LED, but 

don’t forget to put a 1K resistor in serial to limit the current. 

 

ALM / ALARM 

It is the interrupt signal that generated by the RTC alarm. It is in 3.3V level and has HIGH state (3.3V) 

by default. If any alarm occurs (scheduled startup or shutdown), it goes to LOW state (0V), and this 

state will be cleared once Witty Pi 4 Mini’s software detects and processes it. 

SW / SWITCH 

It is the signal line that connects to the switch (button) on Witty Pi 4 Mini. It is also directly connected 

to GPIO-4 in Raspberry Pi’s GPIO header. If you want to connect your own (2-lead) switch, you may 

wire the two leads to SWITCH/GPIO-4 and GND pins. 

 
 

Alternatively, if you wish to trigger Witty Pi 4 Mini with external signal, you can use a N-channel 

MOSFET to achieve this: 
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The signal should be a positive pulse. Processing a pulse will be equal to taping the switch once, so 

it will turn on your Raspberry Pi when it is off, or turn off your Raspberry Pi when it is on. 

CATH / CATHOD 

It is the cathode (ground) for Raspberry Pi. There is a 0.05 Ohm sampling resistor between CATHOD 

and GND, to measure the actual output current. 

 

If you measure the voltage between cathode and ground as Vk, you can calculate the actual current 

with this formula: 

Iout = Vk / 0.05 = 20 * Vk 

GND 

It is the ground of Witty Pi 4 Mini board, and it directly connects to the GND wire of power supply. 

 

11.3 The Unpopulated 2 x 3 Pin Headers (P4) 

This is the In-Circuit Serial Programming (ICSP) header for uploading the firmware to the micro 

controller. You can find the same ICSP header on many Arduino boards. The details about how to 

use this header can be found in this tutorial. 

https://www.uugear.com/doc/WittyPi3_UpdateFirmware.pdf
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11.4 The Unpopulated 7-Pin Header in the Middle (P5) 

In the middle of Witty Pi 4 Mini board, there is another unpopulated 7-pin header, where you can also 

solder a male or female connector.  

        

 (Front View)                 (Back View) 

This header breaks out the internal I2C bus and also some useful signals. 

CLKOUT 

This is the 32768Hz clock output signal from the RTC. This signal can be used to calibrate the RTC. 

INTRPT 

This is the interrupt signal from the RTC, and it is actually the same as the ALM/ALARM pin in 

another unpopulated header P3. It goes LOW when alarm is occurred. 

3V3 

It is 3.3V voltage on Witty Pi 4 Mini board that powers the micro controller, RTC and temperature 

sensor. It has nothing to do with the 3.3V pin in Raspberry Pi’s GPIO header. It is the same as 3V3 in 

P3. 

OTEMP 

This pin is at HIGH (3.3V) level by default. It goes to LOW (~0V) level when the current temperature 

exceeds the preset over-temperature threshold. It will go back to HIGH level when the current 

temperature drops under the below-temperature threshold. 

I-SCL and I-SDA 

These are the SCL and SDA for internal I2C bus. The RTC and temperature sensor are directly 

connected to this internal I2C bus. 

GND 

It is the ground of Witty Pi 4 Mini board, and it directly connects to the GND wire of power supply. 
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12. Integrate with Other Programs 

Witty Pi’s software is written in BASH, and it is very easy to modify and integrate with other programs. 

The daemon.sh script is registered to be executed after boot, and this registration was done by the 

installation script (using update-rc.d command). In the daemon.sh script, it will run beforeScript.sh 

before executing the schedule script (schedule.wpi), and run afterStartup.sh file before waiting for 

GPIO-4 falling, and also run the beforeShutdown.sh before actually shutdown Raspberry Pi. 

 

If you want to run your own program before executing the schedule script (e.g. your program will 

generate a new schedule script file), you can put your program command(s) in beforeScript.sh. 

If you want to run your own program after executing the schedule script (e.g. your program will use 

the scheduled date time for next shutdown), you can put your program command(s) in 

afterStartup.sh. 

If you want to run your own program before shutting down your Raspberry Pi (e.g. your program will 

send out an email before shutdown), you can put your program command(s) in beforeShutdown.sh. 

Please keep in mind the daemon.sh script will be executed by root user, which means it may not 

Startup

Run beforeScript.sh

Execute schedule script

Run afterStartup.shWait for GPIO-4 falling

Run beforeShutdown.sh

Shutdown
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have required path information for frequently used commands. As a result, you will need to use full 

path for all commands in beforeScript.sh, afterStartup.sh and beforeShutdown.sh. Below is an 

example: 

 

This code snippet waits for network and then query the webpage from UUGear’s website. Please 

notice the full path for commands and files. 

hostname → /usr/bin/hostname 

sleep → /usr/bin/sleep 

wget → /usr/bin/wget 

wget.log → /home/pi/wget.log 

If you are not sure about the full path of a command, you can use whereis command to find out. 

 

All commands you put in beforeScript.sh, afterStartup.sh or beforeShutdown.sh will be executed in 

sequence. If one of the commands takes rather long time, the commands after it will be postponed 

accordingly. 

If you don’t want a command to block other commands, you can run it in the background by 

appending “&” at the end of that command, like this: 

 

 

  

while [ "$(/usr/bin/hostname -I)" = "" ]; do 

  /usr/bin/sleep 1 

done 

/usr/bin/wget "https://www.uugear.com/” >/home/pi/wittypi/wget.log 2>&1 

 

pi@raspberrypi:~ $ whereis sleep 

sleep: /usr/bin/sleep /usr/share/man/man1/sleep.1.gz /usr/share/man/man3/sleep.3.gz 

/usr/bin/wget "https://www.uugear.com/” >/home/pi/wittypi/wget.log 2>&1 & 
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13. Migrating from Witty Pi 3 Mini to Witty Pi 4 Mini 

If you have been using Witty Pi 3 Mini before, migrating to Witty Pi 4 Mini will be quite easy to you. 

Witty Pi 4 Mini has the same shape factor like Witty Pi 3 Mini, and the locations of button and 

connectors are the same. They are physically exchangeable. 

In Witty Pi 3 Mini, you cannot specify the “seconds” in scheduled shutdown time, and that was due to 

the limitation from RTC hardware. In Witty Pi 4 Mini, the alarms for startup and shutdown are 

implemented by the firmware, and you can specify the “seconds” in both scheduled times. 

The “??” wildcards are no longer supported in Witty Pi 4 Mini. This is because implementing “??” 

wildcards need more resources than what MCU has. However, you can still use schedule script to 

achieve the same result. The table below shows how to use schedule to replace the “??” wildcards. 

  

Wildcard Use Case Explanation Equivalent with Schedule Script 

Startup: ?? 09:45:00 

Shutdown: ?? 22:30:00 

Turn on at 9:45, and turn 

off at 22:30 every day. 

BEGIN 2022-05-10 09:45:00 

END 2025-07-31 23:59:59 

ON  H12 M45 

OFF H11 M15 

Startup: ?? 09:45:00 

Shutdown: no plan 

Turn on at 9:45 every 

day, and do not schedule 

the shutdown. 

BEGIN 2022-05-10 09:45:00 

END 2025-07-31 23:59:59 

ON  M5 WAIT 

OFF H23 M55 

Startup: no plan 

Shutdown: ?? 22:30:00 

Turn off at 22:30 every 

day, and do not schedule 

the startup. 

BEGIN 2022-05-10 22:25:00 

END 2025-07-31 23:59:59 

ON  M5 

OFF H23 M55 WAIT 

Startup: ?? ??:40:00 

Shutdown: ?? ??:55:00 

Turn on at 40 minutes 

and turn off at 55 minutes 

every hour. 

BEGIN 2022-05-10 00:40:00 

END 2025-07-31 23:59:59 

ON  M15 

OFF M45 

Startup: ?? ??:40:00 

Shutdown: no plan 

Turn on at 40 minutes 

every hour, and do not 

schedule the shutdown. 

BEGIN 2022-05-10 00:40:00 

END 2025-07-31 23:59:59 

ON  M5 WAIT 

OFF M55 

Startup: no plan 

Shutdown: ?? ??:30:00 

Turn off at 30 minutes 

every hour, and do not 

schedule the startup. 

BEGIN 2022-05-10 00:25:00 

END 2025-07-31 23:59:59 

ON  M5 

OFF M55 WAIT 
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If your system has integrated Witty Pi 3 Mini’s software and you have called the functions in 

utilities.sh file. You will need to compare the two versions of utilities.sh files and make sure all 

functions you use are still there. We try not to change the function names, but there are some 

functions get added/removed.  

If your system also directly accesses Witty Pi 3 Mini via I2C interface, you will need to change the 

I2C address and register indexes accordingly. Witty Pi 3 Mini exposes two I2C devices to the bus 

(address 0x68 and 0x69), while Witty Pi 4 Mini exposes only one I2C devices to the bus (address 

0x08). In Witty Pi 4 Mini, the I2C registers in RTC and temperature sensor are mapped to virtual I2C 

registers in single device. Please refer the “What I2C Registers are provided by Witty Pi 4 Mini” 

section for more information. 
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14. Witty Pi Log Files 

In the directory that you install your Witty Pi software, you can find two log files: schedule.log and 

wittyPi.log. If you need our help for solving a problem, please kindly put the log files in email 

attachment too. This will help us to help you better. 

The “schedule.log” file contains the history of schedule script executions. In this log file you can see 

how the next shutdown and startup were scheduled. If you saw unexpected schedule script behavior, 

this log should be the first file to check. 

The “wittyPi.log” file records the history of all Witty Pi activities. If you think your Witty Pi doesn’t 

behave correctly, this log file might provide more information for troubleshooting. 

The time-stamp in the log file is always the system time, instead of the RTC time. During the 

booting, the first log written by Witty Pi’s software is “Witty Pi daemon (vX.XX) is started.”, but its 

time-stamp is not shown. You will see the correct time after the RTC time has been written to the 

system. For example: 

The correct time-stamp firstly appears in the line with text “Done :-)”, so you know this startup 

happened at 14:05. 

When the booting is done, the last log written by Witty Pi software is “Pending for incoming shutdown 

command…”. 

Again, if you need our help for solving a problem, please kindly put the log files in email attachment 

too. In the majority of cases, they will help us a lot to help you better. 

 

  

[xxxx-xx-xx xx:xx:xx] Witty Pi daemon (v4.00) is started. 

…… 

[xxxx-xx-xx xx:xx:xx] Synchronizing time between system and Witty Pi... 

[xxxx-xx-xx xx:xx:xx] Writing RTC time to system... 

[2022-05-09 14:05:13] Done :-) 
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15. Frequently Asked Questions (FAQ) 

15.1 What I2C address is used by Witty Pi 4 Mini? Can I change it? 

Witty Pi 4 Mini implements its own I2C master to communicate with realtime clock and temperature 

sensor, and only exposes one I2C slave device to Raspberry Pi, which has an I2C address: 0x08. 

This address is configurable and you can change it if you want. 

If you have Witty Pi 4 Mini connected to Raspberry Pi and run “i2cdetect –y 1” command in the 

console, you will see this: 

 

If you want to change the I2C address used by Witty Pi 4 Mini, you can change the value of I2C 

register at position #16. For example, if you want to change the I2C address to 0x35, you can run: 

 

After that you also need to modify the “utilities.sh” file (in wittyPi directory). Find the 

I2C_MC_ADDRESS variable and change its value from 0x08 to 0x35.  

In order to access Witty Pi 4 Mini in UWI, you also need to modify the “uwi/wittypi4/api.sh” file. Find “if 

[ "$value" == "08" ]; then” and replace the “08” to “35”. 

The final step is to shut down your Raspberry Pi, fully disconnect the power supply of your Witty Pi 4 

Mini, and then reconnect the power supply. Then the MCU will start working with new address.   

pi@raspberrypi:~ $ i2cdetect -y 1 

    0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f 

00:          -- -- -- -- -- 08 -- -- -- -- -- -- --  

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --  

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --  

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --  

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --  

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --  

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --  

70: -- -- -- -- -- -- -- --               

pi@raspberrypi:~ $ i2cset  -y  1  8  16  0x35 
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15.2 What I2C Registers are provided by Witty Pi 4 Mini? 

The micro controller on Witty Pi 4 Mini works as an I2C slave and Raspberry Pi can read/write its 

registers via I2C interface. Witty Pi’s software configures Witty Pi 4 Mini by setting the I2C register 

accordingly. 

The micro controller also implements an I2C master to access the realtime clock and temperature 

sensor via internal I2C bus. The I2C registers in realtime clock and temperature sensor are all 

mapped as virtual I2C registers in Witty Pi 4 Mini’s I2C slave device, so Raspberry Pi can also access 

them (not always necessary though). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The temperature sensor contains 4 I2C registers and they are mapped to virtual registers #50~#53. 

The realtime clock contains 18 I2C registers and they are mapped to virtual registers #54~#71. 

In Raspberry Pi’s view, Witty Pi 4 Mini provides 3 kinds of I2C registers: 

• Read-only I2C registers 

• Normal I2C registers 

• Virtual I2C registers 

The table below shows the registers provided by Witty Pi 4 Mini. As you can see, some of them are 

read-only (cannot be changed, or can only be updated by the firmware itself): 

  

Temperature Sensor 

register #1 

register #2 

register #3 

register #4 

S 

Realtime Clock 

register #1 

register #2 

register #3 

…… 

S 

Microcontroller 

register #1 

register #2 

register #3 

…… 

virtual register #50 

virtual register #51 

virtual register #52 

virtual register #53 

virtual register #54 

virtual register #55 

virtual register #56 

…… 

 

 

M S 

I²C 

I²C 

I²C M 
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Index Description Range Default Accessible 

0 Firmware ID -- 0x36 Read-only 

1 Integer part for input voltage 0~255 0 Read-only 

2 Decimal part (multiple 100 times) for input 

voltage 

0~99 0 Read-only 

3 Integer part for output voltage 0~255 0 Read-only 

4 Decimal part (multiple 100 times) for output 

voltage 

0~99 0 Read-only 

5 Integer part for output current 0~255 0 Read-only 

6 Decimal part (multiple 100 times) for output 

current 

0~99 0 Read-only 

7 Power mode:  

• Power via LDO regulator = 1 

• Input 5V via USB Type C = 0 

1 or 0 1 Read-only 

8 A flag indicates whether the previous shutdown 

was due to low voltage: 

• Yes = 1 

• No = 0 

1 or 0 0 Read-only 

9 
A flag indicates whether ALARM1 (startup) has 

been triggered. 

• Yes = 1 

• No = 0 

1 or 0 0 Read-only 

10 
A flag indicates whether ALARM2 (shutdown) 

has been triggered. 

• Yes = 1 

• No = 0 

1 or 0 0 Read-only 
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11 The reason code for latest action. 

• 0 = N/A 

• 1 = ALARM1 

• 2 = ALARM2 

• 3 = Button is clicked 

• 4 = Input voltage too low 

• 5 = Input voltage is restored 

• 6 = over temperature 

• 7 = below temperature 

• 8 = ALARM1 delayed 

0~8 0 Read-only 

12 The firmware revision 1~255 1 Read-only 

13 Reserved for future usage #1 0~255 0 Read-only 

14 Reserved for future usage #2 0~255 0 Read-only 

15 Reserved for future usage #3 0~255 0 Read-only 

16 I2C slave address: default=0x08 0x08 

~0x77 

0x08 Read & Write 

17 State when power connected: 

• Default On = 1 

• Default Off = 0 

1 or 0 0 Read & Write 

18 Pulse interval in seconds, when Raspberry Pi is 

off. This parameter affects the white LED blinking 

and dummy load. 

0~255 4 Read & Write 

19 Low voltage threshold (multiple 10 times, 

255=disabled) 

0~255 255 Read & Write 

20 LED lights up duration. 0 if white LED should not 

blink. The bigger value, the longer time to light up 

0~255 100 Read & Write 
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the white LED 

21 The delay (multiple 10) before power cut: 

default=50 (5 seconds) 

0~255 50 Read & Write 

22 Recovery voltage threshold (multiple 10, 

255=disabled) 

0~255 255 Read & Write 

23 Dummy load duration. 0 if dummy load is off. The 

bigger value, the longer time for dummy load to 

draw current 

0~255 0 Read & Write 

24 Adjustment for measured input voltage (multiple 

100) 

-127~127 20 Read &Write 

25 Adjustment for measured output voltage (multiple 

100) 

-127 ~127 20 Read & Write 

26 Adjustment for measured output current (multiple 

100) 

-127 ~127 0 Read & Write 

27 Second of ALARM1 (startup), with BCD format 0~59 0 Read & Write 

28 Minute of ALARM1 (startup), with BCD format 0~59 0 Read & Write 

29 Hour of ALARM1 (startup), with BCD format 0~23 0 Read & Write 

30 Day of ALARM1 (startup), with BCD format 1~31 1 Read & Write 

31 Weekday of ALARM1 (startup), with BCD format 0~6 0 Read & Write 

32 Second of ALARM2 (shutdown), with BCD format 0~59 0 Read & Write 

33 Minute of ALARM2 (shutdown), with BCD format 0~59 0 Read & Write 

34 Hour of ALARM2 (shutdown), with BCD format 0~23 0 Read & Write 

35 Day of ALARM2 (shutdown), with BCD format 1~31 1 Read & Write 

36 Weekday of ALARM2 (shutdown), with BCD 

format 

0~6 0 Read & Write 



 

 
41 

37 Standard value for RTC offset -127~127 0 Read & Write 

38 Turn on/off temperature compensation. 

• ON = 1 

• OFF = 0 

0 or 1 1 Read & Write 

39 A flag that indicates ALARM1 (startup) is 

triggered and not processed. 

0 or 1 0 Read & Write 

40 A flag that indicates ALARM2 (shutdown) is 

triggered and not processed. 

0 or 1 0 Read & Write 

41 Set 1 to ignore I2C_POWER_MODE for low 

voltage shutdown and recovery. 

0 or 1 0 Read & Write 

42 Set 1 to ignore I2C_LV_SHUTDOWN for low 

voltage shutdown and recovery. 

0 or 1 0 Read & Write 

43 Below-temperature action: 

• 0 = do nothing 

• 1 = shutdown 

• 2 = startup 

0~2 0 Read & Write 

44 Below-temperature threshold in C -30~80 75 Read & Write 

45 Over-temperature action: 

• 0 = do nothing 

• 1 = shutdown 

• 2 = startup 

0~2 0 Read & Write 

46 Over-temperature threshold in C -30~80 80 Read & Write 

47 Reserved for future usage #4 0~255 0 Read & Write 

48 Reserved for future usage #5 0~255 0 Read & Write 

49 Reserved for future usage #6 0~255 0 Read & Write 
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50 LM75B: temperature register (2 bytes) ? Read-only 

51 LM75B: configuration register 0~255 0 Read & Write 

52 LM75B: hysteresis temperature register (2 bytes) 75 Read & Write 

53 LM75B: overtemperature register (2 bytes) 80 Read & Write 

54 PCF85063: Control_1 register 0~255 0 Read & Write 

55 PCF85063: Control_2 register 0~255 0 Read & Write 

56 PCF85063: Offset register 0~255 0 Read & Write 

57 PCF85063: RAM_byte register 0~255 0 Read & Write 

58 PCF85063: Seconds register 0~59 0 Read & Write 

59 PCF85063: Minutes register 0~59 0 Read & Write 

60 PCF85063: Hours register 0~23 0 Read & Write 

61 PCF85063: Days register 1~31 1 Read & Write 

62 PCF85063: Weekdays register 0~6 0 Read & Write 

63 PCF85063: Months register 1~12 1 Read & Write 

64 PCF85063: Years register 0~99 0 Read & Write 

65 PCF85063: Second_alarm register 0~59 0 Read & Write 

66 PCF85063: Minute_alarm register 0~59 0 Read & Write 

67 PCF85063: Hour_alarm register 0~23 0 Read & Write 

68 PCF85063: Day_alarm register 1~31 1 Read & Write 

69 PCF85063: Weekday_alarm register 0~6 0 Read & Write 

70 PCF85063: Timer_value register 0~255 0 Read & Write 
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71 PCF85063: Timer_mode register 0~255 0 Read & Write 

 

Below is an example to read the register with index 7, to know the current power mode (0x00 means 

input 5V via the USB Type C connector): 

 

And below is an example to write the register with index 18, to set the pulsing interval to 1 second: 

 

Remarks: although the register with index 16 is writable, changing the I2C address is more than 

writing an I2C register. You will need to modify the software accordingly, and reconnect the power 

supply to make it work. You can find more details in the “What I2C address is used by Witty Pi 4 Mini? 

Can I change it?” section. 

  

pi@raspberrypi:~ $ i2cget  -y  1  0x08  7 

0x00 

pi@raspberrypi:~ $ i2cset  -y  1  0x08  18  1 
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15.3 What GPIO Pins Are Used by Witty Pi4? 

The GPIO pins used by Witty Pi 4 Mini are marked with green color in the table below.  

GPIO 

(BCM) 
Name Physical Name 

GPIO 

(BCM) 

 3.3V 1 2 5V  

2 SDA 1 3 4 5V  

3 SCL 1 5 6 GND  

4 GPIO 7 7 8 TXD 14 

 GND 9 10 RXD 15 

17 GPIO 0 11 12 GPIO 1 18 

27 GPIO 2 13 14 GND  

22 GPIO 3 15 16 GPIO 4 23 

 3.3V 17 18 GPIO 5 24 

10 MOSI 19 20 GND  

9 MISO 21 22 GPIO 6 25 

11 SCLK 23 24 CE0 8 

 GND 25 26 CE1 7 

0 SDA 0 27 28 SCL 0 1 

5 GPIO 21 29 30 GND  

6 GPIO 22 31 32 GPIO 26 12 

13 GPIO 23 33 34 GND  

19 GPIO 24 35 36 GPIO 27 16 

26 GPIO 25 37 38 GPIO 28 20 

 GND 39 40 GPIO 29 21 

As you can see, Witty Pi 4 Mini uses GPIO-4, GPIO-17, GPIO-2(SDA 1) and GPIO-3(SCL 1). 

Witty Pi 4 Mini doesn’t actually use the TXD pin, but it will monitor its voltage. The TXD pin is 

supposed to be HIGH when the system is on, and should go LOW after system has been shut down. 

If you connect some other devices that also use the TXD pin, please make sure they don’t change 

this default behavior, otherwise Witty Pi 4 Mini doesn’t know when the system is off, and cannot fully 

cut the power. 
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GPIO-2 and GPIO-3 are for I2C communication between Raspberry Pi and the MCU (ATtiny841). I2C 

devices are identified by I2C address, and they can share the I2C pins as long as they have different 

I2C addresses. 

15.4 Is Witty Pi 4 Mini Compatible with “Other Hardware”? 

We have got a lot of emails asking a question like this, with the “Other Hardware” replaced by 

different kinds of hardware. 

Please understand that we might not have the hardware you refer, and even if we have, it is difficult 

for us to make tests on all those hardware with Witty Pi 4 Mini. Fortunately, it is not that difficult to 

figure out the answer by yourself. Basically, you just need to consider the I2C address and GPIO pins 

used by the “Other Hardware”. 

If the “Other Hardware” also uses 0x08 I2C address, you will need to change the I2C address used by 

Witty Pi’s micro controller, and change the software accordingly (details here). 

If the “Other Hardware” doesn’t use any GPIO pin that used by Witty Pi, then it should be compatible 

with Witty Pi. 

If you have no idea which I2C address (if applicable) or GPIO pins are used by the “Other Hardware”, 

please contact its developer, as they certainly know their hardware and can provide you accurate 

information about it. 

15.5 Witty Pi 4 Mini does not boot? 

Some customers meet the situation that Witty Pi 4 Mini only boot Raspberry Pi for a few seconds, 

and then shutdown Raspberry Pi or cut the power directly. 

Remarks: you may need to disconnect Witty Pi 4 Mini from your Raspberry Pi, and power on 

Raspberry Pi only for troubleshooting. 

Before making further troubleshooting, please first check these interfaces are properly configured: 

• I2C interface should be enabled 

• Serial Port should be enabled 

• 1-Wire interface should be disabled if you don’t need it, or you need to assign a GPIO pin 

other than GPIO-4 to it. 

If your Raspbian (Raspberry Pi OS) has GUI installed, you can review/configure these interfaces via 

Raspberry Pi Configuration: 
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Also, you can check all GPIO pin states with the command below. You need to run it in the directory 

that has software installed (usually “wittypi”). 

 

The good GPIO states are shown below (please mind those highlighted in green). If you see 

something different, then it might be the culprit that causes the problem. 

 

There are some possible reasons that can cause this kind of problem: 

pi@raspberrypi:~/wittypi $ bash -c '. gpio-util.sh; gpio readall' 
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1. You are using NOOBS 

NOOBS is not always causing this kind of problem, but the chance does exist. If you installed 

multiple operating systems into your Pi, the chance that NOOBS causes this problem will increase. If 

possible, please try not to use NOOBS. If you already use NOOBS and still try to make it work, you 

may set a big power cut delay value (e.g. 25 seconds). If it doesn't help, you will need to install the 

OS without using NOOBS. 

 

2. 1-Wire interface is enabled on GPIO-4, which conflicts with Witty Pi 

If you have 1-Wire interface enabled, by default it will use GPIO-4. Because Witty Pi uses GPIO-4 pin 

to receive shutdown command, this will bring confliction and Witty Pi will shut down your Raspberry 

Pi after every boot. You won’t even have chance to login the system. 

In order avoid this problem, 1-Wire interface should be disabled, or be assigned to a different GPIO 

pin before installation of Witty Pi’s software. If the problem already happens, you need to take out the 

micro SD card from Raspberry Pi and access its file system via an SD card reader. 

You need to edit the config.txt file in the “boot” volume to change the GPIO pin used by 1-Wire 

interface, or you can disable 1-Wire interface if you don’t need it for now. You need to find something 

like “dtoverlay=w1-gpio” in the file. 

If you want 1-Wire to use GPIO-18, just replace “dtoverlay=w1-gpio” with: 

dtoverlay=w1-gpio,gpiopin=18 

If you want to disable 1-Wire interface, just comment it out: 

#dtoverlay=w1-gpio 

Save the file and eject your micro SD card, and put it back to your Raspberry Pi. Now your Raspberry 

Pi should be able to boot normally. 

 

3. Serial Port is not properly configured 

The serial port (UART0) should be enabled, and it should be on GPIO-14 and GPIO-15 (BCM 

naming). The TXD pin in serial port will be monitored by Witty Pi and it goes to LOW when the 

system has been shut down. If the serial port is not properly configured, the TXD pin doesn’t have 

proper default state and Witty Pi may mistakenly think the system is off and then cut the power after 

some delay. 
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4. GPIO-4 pin doesn’t reach a stable status in given time 

After the system is on, GPIO-4 pin should be in input mode and gets internally pulled up. However, 

during the startup the GPIO-4 pin could be unstable. In the daemon.sh script, the GPIO-4 listener 

will be started once the pin state hasn’t changed for 5 seconds. Once the GPIO-4 listener is started, 

any action that pulls down GPIO-4 will be regarded as a shutdown command. So if GPIO-4 pin 

doesn’t really get stable after that given 5 seconds, Witty Pi will take it as a shutdown command, 

lights up the white LED and then shutdown the system. 

There are many factors that might cause the GPIO pin unstable, and the most common one is the 

power supply. If your power supply is not strong enough, during the booting its voltage may drop 

from time to time, which may also make the GPIO pin voltage drop, and trigger Witty Pi's software to 

shut down your Raspberry Pi. 

If it is the case, you can try to delay the starting of GPIO-4 listener, and in the majority of cases it will 

help. You can modify the “daemon.sh” script, in line 94: 

while [ $counter –lt 5 ]; do 

Try to change the number 5 to 25. The bigger number you use, the later the GPIO-4 listener will be 

started. 

This modification may workaround the problem. If it doesn’t, it means your GPIO-4 is really pulled 

down (by software or hardware), and you can confirm that by measuring the voltage on GPIO-4 with 

a multimeter. By default, the GPIO-4 should be internally pulled up. If it gets pulled down, try to find 

out who does this and don’t let it do this again. 

 

15.6 Why Raspberry Pi Immediately Turns On after Shutdown? 

When ALARM1 (startup) occurs, Witty Pi’s firmware will check Raspberry Pi’s status. If Raspberry Pi 

is off, Witty Pi will turn it on; If Raspberry Pi is still powered, Witty Pi’s firmware will cache this startup 

request and will turn on Raspberry Pi just after it gets power off. 

This scenario may happen when your Raspberry Pi’s TXD pin does not go LOW after system has 

been shut down. The reason could be some other hardware strongly pulls up TXD pin, or the system 

crashed during shutdown. When ALARM1 (startup) occurs, your Raspberry Pi is still powered 

because the turning off process is still not finished. 

When this happens, you can find this message in the wittyPi.log file: 

System starts up because of the scheduled startup got delayed. Maybe the scheduled startup was 

due when Pi was running, or Pi had been shut down but TXD stayed HIGH to prevent the power cut. 

This will not be a problem as long as the TXD pin can eventually go LOW after shutdown and the 

device can continue the ON/OFF sequence.  
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16. Revision History 

Revision Date Description 

1.00 2022.07.01 Initial revision 

1.01 2022.07.20 Add description about super capacitor. 

1.02 2022.12.28 Add declaration that software is developed and tested under Raspbian. 
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