## 74AUP1G175-Q100

Low-power D-type flip-flop with reset; positive-edge trigger
Rev. 2 - 10 March 2017
Product data sheet

## 1 General description

The 74AUP1G175-Q100 provides a low-power, low-voltage positive-edge triggered D-type flip-flop with individual data (D) input, clock (CP) input, master reset (MR) input, and Q output. The master reset (MR) is an asynchronous active LOW input and operates independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D input must be stable one set-up time prior to the LOW-to-HIGH clock transition, for predictable operation.

Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire $\mathrm{V}_{\mathrm{cc}}$ range from 0.8 V to 3.6 V . This device ensures a very low static and dynamic power consumption across the entire $\mathrm{V}_{\mathrm{CC}}$ range from 0.8 V to 3.6 V .

This device is fully specified for partial power-down applications using $\mathrm{I}_{\text {OFF }}$. The $\mathrm{l}_{\text {OFF }}$ circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

## 2 Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
- Specified from $-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
- JESD8-12 (0.8 V to 1.3 V )
- JESD8-11 (0.9 V to 1.65 V )
- JESD8-7 (1.2 V to 1.95 V )
- JESD8-5 (1.8 V to 2.7 V )
- JESD8-B (2.7 V to 3.6 V )
- ESD protection:
- MIL-STD-883, method 3015 Class 3A. Exceeds 5000 V
- HBM JESD22-A114F Class 3A. Exceeds 5000 V
- MM JESD22-A115-A exceeds 200 V ( $\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \Omega$ )
- Low static power consumption; $\mathrm{I}_{\mathrm{CC}}=0.9 \mu \mathrm{~A}$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 \% of $\mathrm{V}_{\mathrm{CC}}$
- I Ioff circuitry provides partial Power-down mode operation


## 3 Ordering information

Table 1. Ordering information

| Type number | Package |  | Version |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Temperature <br> range | Name | Description | SOT363 |
| 74AUP1G175GW-Q100 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SC-88 | plastic surface-mounted package; 6 leads | S |

## 4 Marking

Table 2. Marking

| Type number | Marking code ${ }^{[1]}$ |
| :--- | :--- |
| 74AUP1G175GW-Q100 | aT |

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

## 5 Functional diagram



Figure 1. Logic symbol


Figure 2. IEC logic symbol


Figure 3. Logic diagram

## 6 Pinning information

### 6.1 Pinning



Figure 4. Pin configuration SOT363 (SC-88)

### 6.2 Pin description

Table 3. Pin description

| Symbol | Pin | Description |
| :--- | :--- | :--- |
| CP | 1 | clock input (LOW-to-HIGH, edge-triggered) |
| GND | 2 | ground (0 V) |
| D | 3 | data input |
| Q | 4 | flip-flop output |
| V CC | 5 | supply voltage |
| $\overline{M R}$ | 6 | master reset input (active LOW) |

## 7 Functional description

Table 4. Function table ${ }^{[1]}$

| Operating mode | Input |  | Output |  |
| :--- | :--- | :--- | :--- | :--- |
|  | MR | CP | D | Q |
| Reset (clear) | L | X | X | L |
| Load '1' | H | $\uparrow$ | h | H |
| Load ' 0 ' | H | $\uparrow$ | I |  |

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;
$\uparrow=$ LOW-to-HIGH CP transition;
$\mathrm{X}=$ don't care.

## 8 Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground $=0 \mathrm{~V}$ ).

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage |  | -0.5 | +4.6 | V |
| $\mathrm{I}_{\mathrm{K}}$ | input clamping current | $\mathrm{V}_{1}<0 \mathrm{~V}$ | -50 | - | mA |
| V | input voltage | [1] | -0.5 | +4.6 | V |
| Iok | output clamping current | $\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$ | -50 | - | mA |
| $\mathrm{V}_{\mathrm{O}}$ | output voltage | Active mode and Power-down mode [1] | -0.5 | +4.6 | V |
| lo | output current | $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ | - | $\pm 20$ | mA |
| Icc | supply current |  | - | 50 | mA |
| $\mathrm{I}_{\text {GND }}$ | ground current |  | -50 | - | mA |
| $\mathrm{T}_{\text {stg }}$ | storage temperature |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{P}_{\text {tot }}$ | total power dissipation | $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | - | 250 | mW |

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For SC-88 packages: above $87.5^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $4.0 \mathrm{~mW} / \mathrm{K}$.

## 9 Recommended operating conditions

Table 6. Recommended operating conditions

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :--- |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage |  | 0.8 | 3.6 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | input voltage |  | 0 | 3.6 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | output voltage | Active mode | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
|  |  | Power-down mode; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | 0 | 3.6 | V |
| $\mathrm{~T}_{\mathrm{amb}}$ | ambient temperature |  | -40 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | input transition rise and fall rate | $\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V | - | 200 | $\mathrm{~ns} / \mathrm{V}$ |

## 10 Static characteristics

Table 7. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ | $0.70 \times V_{\text {cc }}$ | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V | $0.65 \times V_{C C}$ | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.6 | - | - | V |
|  |  | $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V | 2.0 | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | - | $0.30 \times V_{C C}$ | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V | - | - | $0.35 \times V_{C C}$ | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 0.7 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | - | 0.9 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V | $\mathrm{V}_{\mathrm{CC}}-0.1$ | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ | $0.75 \times \mathrm{V}_{\text {CC }}$ | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ | 1.11 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | 1.32 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | 2.05 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | 1.9 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.72 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.6 | - | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V | - | - | 0.1 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA} ; \mathrm{V}_{C C}=1.1 \mathrm{~V}$ | - | - | $0.3 \times V_{\text {cc }}$ | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ | - | - | 0.31 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | - | 0.31 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | - | 0.31 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | - | 0.44 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | - | - | 0.31 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | - | - | 0.44 | V |
| 1 | input leakage current | $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V | - | - | $\pm 0.1$ | $\mu \mathrm{A}$ |
| Ioff | power-off leakage current | $\mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | - | - | $\pm 0.2$ | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\text {OFF }}$ | additional power-off leakage current | $\begin{aligned} & \mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V} \text { to } 0.2 \mathrm{~V} \end{aligned}$ | - | - | $\pm 0.2$ | $\mu \mathrm{A}$ |
| ICC | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{Cc}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$ | - | - | 0.5 | $\mu \mathrm{A}$ |


| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta I_{\text {CC }}$ | additional supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$ | - | - | 40 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{1}$ | input capacitance | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 $\mathrm{V} ; \mathrm{V}_{1}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$ | - | 0.8 | - | pF |
| $\mathrm{C}_{0}$ | output capacitance | $\mathrm{V}_{\mathrm{O}}=\mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | - | 1.7 | - | pF |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ | $0.70 \times V_{\text {cc }}$ | - | - | V |
|  |  | $\mathrm{V}_{\text {CC }}=0.9 \mathrm{~V}$ to 1.95 V | $0.65 \times V_{\text {cc }}$ | - | - | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | 1.6 | - | - | V |
|  |  | $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V | 2.0 | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | - | $0.30 \times V_{C C}$ | V |
|  |  | $\mathrm{V}_{C C}=0.9 \mathrm{~V}$ to 1.95 V | - | - | $0.35 \times V_{C C}$ | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 0.7 | V |
|  |  | $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V | - | - | 0.9 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V | $\mathrm{V}_{\text {CC }}-0.1$ | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ | $0.7 \times V_{C C}$ | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ | 1.03 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | 1.30 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | 1.97 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | 1.85 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.67 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.55 | - | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V | - | - | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=1.1 \mathrm{~mA} ; \mathrm{V}_{C C}=1.1 \mathrm{~V}$ | - | - | $0.3 \times \mathrm{V}_{\mathrm{Cc}}$ | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ | - | - | 0.37 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | - | 0.35 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | - | 0.33 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | - | 0.45 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | - | - | 0.33 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | - | - | 0.45 | V |
| 1 | input leakage current | $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V | - | - | $\pm 0.5$ | $\mu \mathrm{A}$ |
| loff | power-off leakage current | $\mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | - | - | $\pm 0.5$ | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\text {OFF }}$ | additional power-off leakage current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 0.2 \mathrm{~V} \end{aligned}$ | - | - | $\pm 0.6$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{l}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{Cc}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$ | - | - | 0.9 | $\mu \mathrm{A}$ |


| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta \mathrm{l}_{\text {CC }}$ | additional supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$ | - | - | 50 | $\mu \mathrm{A}$ |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | $0.75 \times \mathrm{V}_{\mathrm{CC}}$ | - | - | V |
|  |  | $\mathrm{V}_{\text {CC }}=0.9 \mathrm{~V}$ to 1.95 V | $0.70 \times V_{\text {CC }}$ | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.6 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 2.0 | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | - | $0.25 \times V_{C C}$ | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V | - | - | $0.30 \times V_{\text {CC }}$ | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 0.7 | V |
|  |  | $\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V | - | - | 0.9 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\text {CC }}=0.8 \mathrm{~V}$ to 3.6 V | $\mathrm{V}_{\text {CC }}-0.11$ | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-1.1 \mathrm{~mA} ; \mathrm{V}_{C C}=1.1 \mathrm{~V}$ | $0.6 \times \mathrm{V}_{\mathrm{CC}}$ | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ | 0.93 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | 1.17 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | 1.77 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | 1.67 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.40 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.30 | - | - | V |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V | - | - | 0.11 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=1.1 \mathrm{~mA} ; \mathrm{V}_{C C}=1.1 \mathrm{~V}$ | - | - | $0.33 \times V_{C C}$ | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=1.7 \mathrm{~mA} ; \mathrm{V}_{C C}=1.4 \mathrm{~V}$ | - | - | 0.41 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | - | 0.39 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | - | 0.36 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | - | 0.50 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | - | - | 0.36 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | - | - | 0.50 | V |
| 1 | input leakage current | $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V | - | - | $\pm 0.75$ | $\mu \mathrm{A}$ |
| loff | power-off leakage current | $\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | - | - | $\pm 0.75$ | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\text {OFF }}$ | additional power-off leakage current | $\begin{aligned} & \mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 0.2 \mathrm{~V} \end{aligned}$ | - | - | $\pm 0.75$ | $\mu \mathrm{A}$ |
| Icc | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$ | - | - | 1.4 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\mathrm{CC}}$ | additional supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$ | - | - | 75 | $\mu \mathrm{A}$ |

[1] One input at $V_{C C}-0.6 \mathrm{~V}$, other input at $\mathrm{V}_{C C}$ or GND .

## 11 Dynamic characteristics

Table 8. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V ); for test circuit see Figure 7 .

| Symbol | Parameter | Conditions | $25^{\circ} \mathrm{C}$ |  |  | $-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ ${ }^{[1]}$ | Max | Min | $\begin{gathered} \text { Max } \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$ | $\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$ |  |
| $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{pd}}$ | propagation delay | CP to Q; see Figure 5 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | 21.1 | - | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | 2.4 | 5.9 | 11.7 | 2.2 | 11.9 | 12.0 | ns |
|  |  | $\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V | 2.0 | 4.1 | 6.8 | 1.8 | 7.3 | 7.6 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 1.6 | 3.3 | 5.4 | 1.3 | 5.9 | 6.2 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.3 | 2.5 | 3.6 | 1.1 | 4.0 | 4.2 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.2 | 2.1 | 2.9 | 1.0 | 3.3 | 3.5 | ns |
|  |  | $\overline{\mathrm{MR}}$ to Q; see Figure 6 [2] |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | 17.4 | - | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | 2.4 | 5.2 | 9.7 | 2.2 | 10.0 | 12.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | 2.3 | 3.8 | 5.2 | 2.1 | 6.4 | 6.6 | ns |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | 1.8 | 3.1 | 4.9 | 1.7 | 5.4 | 5.6 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.8 | 2.6 | 3.6 | 1.5 | 4.0 | 4.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.6 | 2.4 | 3.1 | 1.3 | 3.3 | 3.6 | ns |
| $\mathrm{f}_{\text {max }}$ | maximum frequency | CP; see Figure 5 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | 50 | - | - | - | - | MHz |
|  |  | $\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V | - | 200 | - | 170 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | - | 345 | - | 310 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | 435 | - | 400 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 550 | - | 490 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 615 | - | 550 | - | - | MHz |
| $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{pd}}$ | propagation delay | CP to Q; see Figure 5 [2] |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ | - | 24.7 | - | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | 2.6 | 6.8 | 13.3 | 2.4 | 13.6 | 13.6 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | 2.3 | 4.8 | 7.9 | 2.0 | 8.4 | 8.7 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 2.1 | 3.9 | 6.1 | 1.8 | 6.6 | 6.9 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.7 | 3.0 | 4.3 | 1.5 | 4.7 | 5.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.6 | 2.7 | 3.6 | 1.3 | 4.0 | 4.2 | ns |
|  |  | $\overline{\mathrm{MR}}$ to Q; see Figure $6 \quad{ }^{\text {[2] }}$ |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ | - | 21.0 | - | - | - | - | ns |


| Symbol | Parameter | Conditions | $25^{\circ} \mathrm{C}$ |  |  | $-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ ${ }^{[1]}$ | Max | Min | Max $\left(85^{\circ} \mathrm{C}\right)$ | $\begin{array}{\|c\|} \hline \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{array}$ |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | 2.6 | 6.2 | 11.5 | 2.6 | 11.7 | 13.6 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | 2.5 | 4.4 | 6.1 | 2.4 | 7.6 | 7.8 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 2.5 | 3.7 | 5.7 | 2.2 | 6.3 | 6.3 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 2.1 | 3.2 | 4.3 | 1.9 | 4.7 | 4.9 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 2.0 | 3.0 | 3.9 | 1.8 | 4.1 | 4.3 | ns |
| $\mathrm{f}_{\text {max }}$ | maximum frequency | CP; see Figure 5 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | 50 | - | - | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | - | 190 | - | 150 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | - | 320 | - | 280 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | 420 | - | 310 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 485 | - | 370 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 550 | - | 410 | - | - | MHz |
| $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{pd}}$ | propagation delay | CP to Q; see Figure 5 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | 28.1 | - | - | - | - | ns |
|  |  | $\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V | 3.0 | 7.6 | 14.8 | 2.8 | 15.2 | 15.4 | ns |
|  |  | $\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V | 2.7 | 5.3 | 8.7 | 2.3 | 9.4 | 9.9 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 2.3 | 4.4 | 6.8 | 2.1 | 7.4 | 7.9 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 2.1 | 3.5 | 5.0 | 1.9 | 5.3 | 5.6 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 2.0 | 3.1 | 4.3 | 1.7 | 4.7 | 4.9 | ns |
|  |  | MR to Q; see Figure 6 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ | - | 24.6 | - | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | 3.2 | 7.0 | 13.2 | 2.9 | 13.5 | 15.2 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | 3.1 | 5.0 | 6.8 | 2.6 | 8.6 | 9.1 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 2.5 | 4.3 | 6.5 | 2.5 | 7.2 | 7.4 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 2.6 | 3.7 | 5.0 | 2.2 | 5.4 | 5.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 2.4 | 3.5 | 4.4 | 2.1 | 4.8 | 5.0 | ns |
| $\mathrm{f}_{\text {max }}$ | maximum frequency | CP ; see Figure 5 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | 50 | - | - | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | - | 180 | - | 120 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | - | 300 | - | 190 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | 405 | - | 240 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 420 | - | 300 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 480 | - | 320 | - | - | MHz |
| $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ |  |  |  |  |  |  |  |  |  |


| Symbol | Parameter | Conditions | $25^{\circ} \mathrm{C}$ |  |  | $-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ ${ }^{[1]}$ | Max | Min | $\begin{gathered} \text { Max } \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$ | $\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$ |  |
| $\mathrm{t}_{\mathrm{pd}}$ | propagation delay | CP to Q; see Figure 5 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ | - | 38.4 | - | - | - | - | ns |
|  |  | $\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V | 3.6 | 9.8 | 19.5 | 3.4 | 20.6 | 21.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | 3.3 | 6.9 | 11.2 | 3.2 | 12.4 | 13.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 3.1 | 5.7 | 8.8 | 2.9 | 9.6 | 10.2 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 3.0 | 4.6 | 6.4 | 2.6 | 6.9 | 7.3 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 2.8 | 4.2 | 5.7 | 2.5 | 6.5 | 6.9 | ns |
|  |  | $\overline{\mathrm{MR}}$ to Q; see Figure $6{ }^{\text {[2] }}$ |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ | - | 35.1 | - | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | 3.9 | 9.3 | 18.0 | 3.7 | 18.6 | 19.8 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | 3.9 | 6.6 | 8.9 | 3.6 | 11.6 | 12.2 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 3.6 | 5.6 | 8.6 | 3.4 | 9.6 | 9.7 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 3.5 | 4.8 | 6.4 | 2.9 | 7.2 | 7.2 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 3.3 | 4.6 | 5.7 | 3.1 | 6.4 | 6.9 | ns |
| $\mathrm{f}_{\text {max }}$ | maximum frequency | CP ; see Figure 5 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ | - | 35 | - | - | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | - | 130 | - | 70 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | - | 200 | - | 120 | - | - | MHz |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | - | 240 | - | 150 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 275 | - | 190 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 300 | - | 200 | - | - | MHz |
| $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, 10 \mathrm{pF}, 15 \mathrm{pF}$ and 30 pF |  |  |  |  |  |  |  |  |  |
| $t_{w}$ | pulse width | CP; HIGH or LOW; <br> see Figure 5 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=0.8 \mathrm{~V}$ | - | 5.25 | - | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | - | 1.6 | - | 1.5 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | - | 1.0 | - | 0.9 | - | - | ns |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | - | 0.75 | - | 0.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 0.6 | - | 0.4 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 0.55 | - | 0.4 | - | - | ns |
|  |  | MR; LOW; see Figure 6 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\text {CC }}=0.8 \mathrm{~V}$ | - | 9.0 | - | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V | - | 3.0 | - | 4.9 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | - | 1.75 | - | 2.5 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | 1.35 | - | 1.8 | - | - | ns |



| Symbol | Parameter | Conditions | $25^{\circ} \mathrm{C}$ |  |  | $-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ ${ }^{[1]}$ | Max | Min | $\begin{gathered} \text { Max } \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$ | $\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$ |  |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | - | 1.9 | - | - | - | - | pF |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 2.2 | - | - | - | - | pF |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 2.7 | - | - | - | - | pF |

[1] All typical values are measured at nominal $\mathrm{V}_{\mathrm{CC}}$.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$.
[3] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation ( $\mathrm{P}_{\mathrm{D}}$ in $\mu \mathrm{W}$ ).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$C_{L}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$N=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.

### 11.1 Waveforms and test circuit



Measurement points are given in Table 9.
The shaded areas indicate when the input is permitted to change for predictable output performance.
$\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage levels that occur with the output load.
Figure 5. The clock input (CP) to output (Q) propagation delays, the clock pulse width, the $D$ to $C P$ set-up, the $C P$ to D hold times and the maximum input clock frequency


Measurement points are given in Table 9.
$\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage levels that occur with the output load.
Figure 6. The master reset (MR) input to output (Q) propagation delays, the master reset pulse width and the MR to CP recovery time

Table 9. Measurement points

| Supply voltage | Output | Input |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{V}_{\mathrm{CC}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{l}}$ | $\mathbf{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}$ |
| 0.8 V to 3.6 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\leq 3.0 \mathrm{~ns}$ |



Test data is given in Table 10.
Definitions for test circuit:
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to the output impedance $\mathrm{Z}_{\mathrm{o}}$ of the pulse generator.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Figure 7. Test circuit for measuring switching times

Table 10. Test data

| Supply voltage | Load |  | $\mathbf{V}_{\mathrm{EXT}}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{V}_{\mathrm{CC}}$ | $\mathrm{C}_{\mathrm{L}}$ | $\mathbf{R}_{\mathrm{L}}{ }^{[1]}$ | $\mathbf{t}_{\text {PLH }}, \mathbf{t}_{\text {PHL }}$ | $\mathbf{t}_{\text {PZH }}, \mathbf{t}_{\text {PHZ }}$ | $\mathbf{t}_{\text {PZL }}, \mathbf{t}_{\text {PLZ }}$ |
| 0.8 V to 3.6 V | $5 \mathrm{pF}, 10 \mathrm{pF}, 15 \mathrm{pF}$ and 30 pF | $5 \mathrm{k} \Omega$ or $1 \mathrm{M} \Omega$ | open | GND | $2 \times \mathrm{V}_{\mathrm{CC}}$ |

[1] For measuring enable and disable times $R_{L}=5 \mathrm{k} \Omega$, for measuring propagation delays, setup and hold times and pulse width $R_{L}=1 \mathrm{M} \Omega$.

## 12 Package outline



DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ | $\mathbf{A}_{\mathbf{1}}$ <br> $\boldsymbol{m a x}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{e}$ | $\mathbf{e}_{\mathbf{1}}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.1 | 0.1 | 0.30 | 0.25 | 2.2 | 1.35 | 1.3 | 0.65 | 2.2 | 0.45 | 0.25 | 0.2 | 0.2 | 0.1 |


| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |
| SOT363 |  |  | SC-88 | $\pm$ ¢ | $\begin{aligned} & \hline 04-11-08 \\ & 06-03-16 \end{aligned}$ |

Figure 8. Package outline SOT363 (SC-88)

## 13 Abbreviations

Table 11. Abbreviations

| Acronym | Description |
| :--- | :--- |
| CDM | Charged Device Model |
| DUT | Device Under Test |
| ESD | ElectroStatic Discharge |
| HBM | Human Body Model |
| MIL | Military |
| MM | Machine Model |

## 14 Revision history

Table 12. Revision history

| Document ID | Release date | Data sheet status | Change notice | Supersedes |
| :--- | :--- | :--- | :--- | :--- |
| 74AUP1G175_Q100 v.2 | 20170310 | Product data sheet | - | 74AUP1G175_Q100 v.1 |
| Modifications: | - The format of this data sheet has been redesigned to comply with the identity guidelines of <br> Nexperia. <br> - Legal texts have been adapted to the new company name where appropriate. |  |  |  |
| 74AUP1G175_Q100 v.1 | 20130131 | Product data sheet | - | - |

## Contents

1 General description1
2 Features and benefits .....  1
3 Ordering information .....  2
4 Marking .....  2
5 Functional diagram .....  2
6 Pinning information ..... 3
Pinning ..... 3
6.2 Pin description ..... 3
3
7 Functional description
4
Limiting values
4
Recommended operating conditions
5
1011
11.1
Dynamic characteristics .....  8
Waveforms and test circuit ..... 12
12 Package outline ..... 15
13 Abbreviations ..... 16
14 Revision history ..... 16

